Towards efficient partial order techniques for time Petri nets

Hanifa Boucheneb

Joint work with K. Wang & K. Barkaoui & Z. Li

École Polytechnique de Montréal

October 26, 2020

Hanifa Boucheneb

Efficient partial order techniques for TPN

October 26, 2020 1 / 16

Time Petri nets (TPN)

2 POR techniques

- Stubborn sets
- Stubborn sets with POSETs
- Limitations of POSETs

Stubborn sets without POSETs for a subclass of TPN

4 Conclusion

Time Petri nets (TPN)

TPN = PN where each t_i has a firing interval $[a_i, b_i]$.

- $[a_i, b_i]$ specifies the minimal and maximal firing delays of t_i .
- When t_i is newly enabled, $I(t_i) = [a_i, b_i]$. Bounds of $I(t_i)$ decrease with time, until t_i is fired or disabled.
- t_i is firable, if $\downarrow I(t_i) = 0$. It must fire immediately, when $\uparrow I(t_i) = 0$.
- Its firing takes no time but leads to a new marking.

Hanifa Boucheneb

Time Petri nets (TPN)

Verification is mainly based on time abstractions:

State space abstractions:

- preserve markings and firing sequences,
- are finite for bounded TPN, but
- suffer from the state explosion problem.

 \implies Partial order reduction (POR) techniques are well-accepted to tackle this problem. \implies How to use POR techniques in the context of TPN?

- POR techniques aim to reduce the state space to be explored, by selecting as few as possible the transitions to be fired, while preserving the properties of interest.
- For the deadlock properties, this selection can be performed using:
 - Stubborn sets method [Valmari et al., 1992, 1993, 2011],
 - Persistent sets method [Godefroid et al., 1996] (special case of stubborn sets) or
 - Ample sets [Peled et al., 1993, 1997].
- \implies Stubborn sets

Definition (Valmari et al., 1992, 1993, 2011)

Let $\alpha \in C$ be a state class and $\mu \subseteq T$. μ is a stubborn set of α , if: D0: $Fr(\alpha) \neq \emptyset \iff \mu \neq \emptyset$. D1w: $\exists t \in \mu, \forall \omega \in (T - \mu)^+, \alpha \xrightarrow{\omega} \Rightarrow \alpha \xrightarrow{\omega t}$. D2: $\forall t \in \mu, \forall \omega \in (T - \mu)^+, \forall \alpha' \in C, \alpha \xrightarrow{\omega t} \alpha' \Rightarrow \alpha \xrightarrow{t\omega} \alpha'$.

• However, the diamond property imposed by D2 is difficult to meet, even for conflict-free transitions.

POR techniques: Stubborn sets

Example

For α_0 , the set $\mu = \{t_1\}$ satisfies:

• D0: $Fr(\alpha_0) \neq \emptyset \Leftrightarrow \mu \neq \emptyset$.

• D1w:
$$\forall \omega \in (T - \mu)^+, \alpha_0 \xrightarrow{\omega} \Rightarrow \alpha_0 \xrightarrow{\omega t_1}$$

•
$$D2': \forall \omega \in (T - \mu)^+, \alpha_0 \xrightarrow{\omega t_1} \Rightarrow \alpha_0 \xrightarrow{t_1 \omega}$$

But, it does not satisfy D2, since for t_2 , it holds that:

•
$$\alpha_0 \xrightarrow{t_2 t_1} \alpha_4$$
,

•
$$\alpha_0 \xrightarrow{t_1 t_2} \alpha_3$$
, and

• $\alpha_3 \neq \alpha_4$ but they share the same marking.

What about using D2' instead of D2?

POR techniques: Stubborn sets

D0, D1w and D2' are not sufficient to detect deadlocks.

- $\{t_1\} \models_{\alpha_0} D0 \land D1w \land D2'$ and
- firing t_1 from α_0 does not allow to detect the deadlock marking p_3 .

 \Longrightarrow D0, D1w and D2' are used in combination with POSETs.

POR techniques: Stubborn sets with POSETs

- Idea: Relax the firing rule by ignoring some firing order constraints.
- Aim: Compute, by exploring only one sequence, the union of state classes reachable by a set of equivalent sequences (i.e., a POSET).
- Let α be a state class and μ ⊆ T such that μ ⊨_α D0 ∧ D1w ∧ D2'.
 For t ∈ μ ∩ Fr(α), the successor of α by t is computed without fixing any firing order constraint between t and the transitions outside μ.

Does a POSET cover all state classes reachable by its sequences?

POR techniques: Limitations of POSETs

- For α_0 and $\mu = \{t_1\}$, the exploration order t_1t_2 of the transitions of the POSET $\{t_1, t_2\}$ will not cover all states of $\alpha_3 \cup \alpha_4 \implies$ the deadlock marking p_3 will not be detected.
- For α₀ and μ = {t₂}, the exploration order t₂t₁ of the transitions of the POSET {t₁, t₂} will cover all states of α₃ ∪ α₄ ⇒ the deadlock marking p₃ will be detected.
- ⇒ Exploration order of the transitions of a POSET may fail to cover all state classes reachable by its sequences.
- ⇒ Does there always exist an exploration order of the transitions of a POSET that allows to cover all state classes reachable by its sequences?

10 / 16

POR techniques: Limitations of POSETs

For α₀ and μ = {t₂} (or μ = {t₁}), none of the exploration orders of the transitions of the POSET {t₁, t₂} allows to cover all states of α₃ ∪ α₅.

 \implies How to be sure that the explored POSETs cover the deadlock markings?

POR techniques: Limitations of POSETs

To cover the deadlock markings of the TPN, it suffices that:

- μ of α satisfies D0, D1w, D2' and, in addition, sc: $\forall t \in Fr(\alpha), t \in \mu \Rightarrow ((\bullet t)^{\bullet} \cup (t^{\bullet})^{\bullet} \cup \bullet(\bullet t)) \subseteq \mu$ (the transitions that may affect the effect of t) [Boucheneb et al. 2015].
- This selection can be limited to the transitions of (([•]t)[•] ∪ (t[•])[•] ∪ [•]([•]t)) that may occur before t [Boucheneb et. al 2018].

POR techniques without POSETs for a subclass of TPN

• Let TPN be the set of TPN $N = (P, T, pre, post, M_0, ls)$ such that $\forall \alpha = (M, F) \in C, \forall t_i \in Fr(\alpha),$

•
$$\uparrow$$
 $ls(t_i) = \infty \lor$

• $\forall t_j \in CFS(t_i), t_j \in En(M) \land (F \land \underline{t}_j \leq \underline{t}_i \text{ is consistent}).$

Theorem

Let $\mathcal{N} \in \mathcal{TPN}$. The selective search w.r.t. D0, D1w and D2' from the initial state class of \mathcal{N}^a preserves the deadlock markings of \mathcal{N} .

^aA selective search w.r.t. D0, D1w and D2', from the initial state class of \mathcal{N} , is a partial state space exploration, where the set of transitions selected to be fired, from the initial state class and each computed state class, satisfies D0, D1w and D2'.

POR techniques without POSETs for a subclass of TPN

- $TPN \supset$ Conflict-free TPN i.e., TPN sucht that $\forall t \in T, CFS(t) = \{t\}.$
- $TPN \supset$ Free-choice TPN i.e., safe TPN such that $\forall t \in T, \forall t' \in CFS(t), pre(t) = pre(t') \land \uparrow ls(t) = \uparrow ls(t').$
- $TPN \supset$ Weighted comparable preset TPN i.e., safe TPN such that $\forall t \in T, \forall t' \in CFS(t)$,
 - $\textit{pre}(t) \leq \textit{pre}(t') \lor \textit{pre}(t') \leq \textit{pre}(t)$) and
 - $pre(t) \leq pre(t') \Rightarrow \downarrow ls(t) \leq \uparrow ls(t') \land \uparrow ls(t) = \infty.$
- $\mathcal{TPN} \supset \text{TPN}$ such that $\forall t \in T, |CFS(t)| > 1 \Rightarrow \uparrow ls(t) = \infty.$

- This paper discusses the limitations of using the POR techniques in combination with POSETs, in the context of TPN.
- It provides a subclass of TPN that takes advantage of the POR techniques of PN, without resorting to POSETs.
- As future work, we will investigate the expansion of this subclass as well as sufficient structural membership conditions.

Thank you!

Hanifa Boucheneb

Efficient partial order techniques for TPN

October 26, 2020

A.

l6 / 16

3