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Time Petri nets (TPN)
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• •

TPN = PN where each ti has a firing interval [ai , bi ].

[ai , bi ] specifies the minimal and maximal firing delays of ti .

When ti is newly enabled, I (ti ) = [ai , bi ]. Bounds of I (ti ) decrease with
time, until ti is fired or disabled.

ti is firable, if ↓ I (ti ) = 0. It must fire immediately, when ↑ I (ti ) = 0.

Its firing takes no time but leads to a new marking.
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Time Petri nets (TPN)

Verification is mainly based on time abstractions:
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• •
State space abstraction (CSCG)
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State space abstractions:

preserve markings and firing sequences,

are finite for bounded TPN, but

suffer from the state explosion problem.

=⇒ Partial order reduction (POR) techniques are well-accepted to tackle this problem.
=⇒ How to use POR techniques in the context of TPN?
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POR techniques

POR techniques aim to reduce the state space to be explored, by
selecting as few as possible the transitions to be fired, while
preserving the properties of interest.

For the deadlock properties, this selection can be performed using:

Stubborn sets method [Valmari et al., 1992, 1993, 2011],
Persistent sets method [Godefroid et al., 1996] (special case of
stubborn sets) or
Ample sets [Peled et al., 1993, 1997].

=⇒ Stubborn sets
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POR techniques: Stubborn sets

Definition (Valmari et al., 1992, 1993, 2011)

Let α ∈ C be a state class and µ ⊆ T . µ is a stubborn set of α, if:

D0: Fr(α) 6= ∅ ⇔ µ 6= ∅.

D1w: ∃t ∈ µ,∀ω ∈ (T − µ)+, α
ω

−→ ⇒ α
ωt
−→.

D2: ∀t ∈ µ,∀ω ∈ (T − µ)+,∀α′ ∈ C, α
ωt
−→ α′ ⇒ α

tω
−→ α′.

However, the diamond property imposed by D2 is difficult to meet,
even for conflict-free transitions.
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POR techniques: Stubborn sets
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CSCG
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Example
For α0, the set µ = {t1} satisfies:

D0: Fr(α0) 6= ∅ ⇔ µ 6= ∅.

D1w : ∀ω ∈ (T − µ)+, α0
ω

−→ ⇒ α0
ωt1−→.

D2′: ∀ω ∈ (T − µ)+, α0
ωt1−→ ⇒ α0

t1ω−→.

But, it does not satisfy D2, since for t2, it holds that:

α0
t2t1−→ α4,

α0
t1t2−→ α3, and

α3 6= α4 but they share the same marking.

What about using D2’ instead of D2?
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POR techniques: Stubborn sets

D0, D1w and D2’ are not sufficient to detect deadlocks.
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{t1} |=α0 D0 ∧ D1w ∧ D2′ and

firing t1 from α0 does not allow to detect the deadlock marking p3.

=⇒ D0, D1w and D2’ are used in combination with POSETs.
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POR techniques: Stubborn sets with POSETs

Idea: Relax the firing rule by ignoring some firing order constraints.

Aim: Compute, by exploring only one sequence, the union of state
classes reachable by a set of equivalent sequences (i.e., a POSET).

Let α be a state class and µ ⊆ T such that µ |=α D0 ∧ D1w ∧ D2′.
For t ∈ µ ∩ Fr(α), the successor of α by t is computed without fixing
any firing order constraint between t and the transitions outside µ.

Does a POSET cover all state classes reachable by its sequences?
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POR techniques: Limitations of POSETs
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For α0 and µ = {t1}, the exploration order t1t2 of the transitions of the POSET
{t1, t2} will not cover all states of α3 ∪ α4 =⇒ the deadlock marking p3 will not
be detected.

For α0 and µ = {t2}, the exploration order t2t1 of the transitions of the POSET
{t1, t2} will cover all states of α3 ∪ α4 =⇒ the deadlock marking p3 will be
detected.

=⇒ Exploration order of the transitions of a POSET may fail to cover all state
classes reachable by its sequences.

=⇒ Does there always exist an exploration order of the transitions of a POSET
that allows to cover all state classes reachable by its sequences?
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POR techniques: Limitations of POSETs
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• •

•

b) Its CSCG

c) α3 ∪ α5 6= α3 ⊔ α5

a) A bounded TPN

t1
t2

t3
t2 t1
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t5 t4
t5
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t4
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t4
t4

t3

t3

α0

α1 α2

α3α4 α5

α6 α7 α8

α9α10 α11

α12

• α3 = (p3 + p4 + 2p5 + p8,

−4 ≤ t3 − t4 ≤ 2 ∧
−2 ≤ t3 − t5 ≤ 5 ∧
1 ≤ t4 − t5 ≤ 4).
• α5 = (p3 + p4 + 2p5 + p8,

−1 ≤ t3 − t4 ≤ 3 ∧
1 ≤ t3 − t5 ≤ 5 ∧
0 ≤ t4 − t5 ≤ 4).

For α0 and µ = {t2} (or µ = {t1}), none of the exploration orders of the
transitions of the POSET {t1, t2} allows to cover all states of α3 ∪ α5.

=⇒ How to be sure that the explored POSETs cover the deadlock markings?
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POR techniques: Limitations of POSETs

To cover the deadlock markings of the TPN, it suffices that:

µ of α satisfies D0, D1w , D2′ and, in addition, sc:
∀t ∈ Fr(α), t ∈ µ ⇒ ((•t)• ∪ (t•)• ∪ •(•t)) ⊆ µ (the transitions that may
affect the effect of t) [Boucheneb et al. 2015].

This selection can be limited to the transitions of ((•t)• ∪ (t•)• ∪ •(•t))
that may occur before t [Boucheneb et. al 2018].
p1 p2

p4 p5p7

p6

p3

3

t2[2, 4]t1[1, 3] t7[1, 1]

t6[1, 1]

t3[1, 2]

t4[1, 1] t5 [2, 2]

• •

•

• µ = {t2} |= D0 ∧D1w ∧D2′ for α0.

• With sc, µ = {t2, t5, t7, t4, t6, t1, t3}
=⇒ Fr(α0) = µ ∩ Fr(α0).

• sc may offset the benefits of the POR techniques,
even for conflict-free TPN.

=⇒ Is there a subclass of TPN where POR techniques can be applied without
resorting to the POSETs?
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POR techniques without POSETs for a subclass of TPN

Let T PN be the set of TPN N = (P ,T , pre, post,M0, Is) such that
∀α = (M,F ) ∈ C ,∀ti ∈ Fr(α),

↑ Is(ti ) = ∞ ∨
∀tj ∈ CFS(ti ), tj ∈ En(M) ∧ (F ∧ t j ≤ t i is consistent).

Theorem

Let N ∈ T PN . The selective search w.r.t. D0, D1w and D2′ from the

initial state class of N a preserves the deadlock markings of N .

aA selective search w.r.t. D0,D1w and D2′, from the initial state class of
N , is a partial state space exploration, where the set of transitions selected to
be fired, from the initial state class and each computed state class, satisfies
D0,D1w and D2′.
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POR techniques without POSETs for a subclass of TPN

T PN ⊃ Conflict-free TPN i.e., TPN sucht that
∀t ∈ T ,CFS(t) = {t}.

T PN ⊃ Free-choice TPN i.e., safe TPN such that
∀t ∈ T ,∀t ′ ∈ CFS(t), pre(t) = pre(t ′) ∧ ↑ Is(t) = ↑ Is(t ′).

T PN ⊃ Weighted comparable preset TPN i.e., safe TPN such that
∀t ∈ T ,∀t ′ ∈ CFS(t),

pre(t) ≤ pre(t ′) ∨ pre(t ′) ≤ pre(t)) and
pre(t) ≤ pre(t ′) ⇒ ↓ Is(t) ≤ ↑ Is(t ′) ∧ ↑ Is(t) = ∞.

T PN ⊃ TPN such that
∀t ∈ T , |CFS(t)| > 1 ⇒ ↑ Is(t) = ∞.
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Conclusion

This paper discusses the limitations of using the POR techniques in
combination with POSETs, in the context of TPN.

It provides a subclass of TPN that takes advantage of the POR
techniques of PN, without resorting to POSETs.

As future work, we will investigate the expansion of this subclass as
well as sufficient structural membership conditions.
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Thank you!
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