

ON/OFF control trajectory computation for steady state reaching in batches Petri nets

Ruotian Liu, Rabah Ammour, Leonardo Brenner, Isabel Demongodin

LIS, Aix-Marseille University, Marseille, France MoFED Team

26 October, 2020

VECoS 2020

14th International Conference on Verification and Evaluation of Computer and Communication Systems

1/19

Xi'an, China

Motivation

Objective

Control the transient behavior to reach a target steady state from a given initial state in hybrid /discrete event systems.

E

590

2/19

Generalized batches Petri nets could be used as hybrid model with timed event dynamics.

Generalized batches Petri nets

A generalized batches Petri net (GBPN) is a 6-tuple $N = (P, T, Pre, Post, \gamma, Time)$ where: • $P = P^D \cup P^C \cup P^B$ • $T = T^D \cup T^C \cup T^B$ • Pre and Post : $(P^D \times T \to \mathbb{N})$ $\cup ((P^{C} \cup P^{B}) \times T \rightarrow \mathbb{R}_{\geq 0})$ • $\gamma: P^B \to \mathbb{R}^3_{>0}$, $\gamma(p_i) = (V_i, d_i^{\max}, s_i)$ • Time : $T \to \mathbb{R}_{>0}$, $Time(t_i) = d_i$ if $t_i \in T^D$; $Time(t_i) = \Phi_i \text{ if } t_i \in T^C \cup T^B$

3/19

Ruotian Liu, Rabah Ammour, Leonardo Brenner, Isabel Demongodin ON/OFF control in batches Petri nets

Batch

A batch is a group of discrete entities, characterized by three continuous variables: a length, a density and a head position.

Definition

Inside batch place p_i , a batch $\beta_i^k(\tau) = (l_i^k(\tau), d_i^k(\tau), x_i^k(\tau)).$

- **1** $I_i^k(\tau) \in \mathbb{R}_{\geq 0}$ is the length.
- 2 $d_i^k(\tau) \in \mathbb{R}_{\geq 0}$ is the density.

③
$$x_i^k(\tau) \in \mathbb{R}_{\geq 0}$$
 is the head position.

- A batch β_i^k with $d_i^k = d_i^{\text{max}}$, is called as dense batch.
- A batch β_i^k with $x_i^k = s_i$, is called as output batch.

Marking and marking quantity

The marking of a GBPN at time τ , $\mathbf{m}(\tau) = [m_1(\tau)m_2(\tau)\dots m_n(\tau)]^T$, is a function that assigns to each discrete, continuous and batch place a nonnegative integer, a nonnegative real number and a series of batches $m_i(\tau) = \{\beta_i^1(\tau), \dots, \beta_i^r(\tau)\}$, respectively.

The marking quantity vector $\boldsymbol{q} = \mu(\boldsymbol{m}) \in \mathbb{R}^n_{\geq 0}$ associated with marking \boldsymbol{m} is: $q_i = \begin{cases} m_i & \text{if } p_i \in P^D \cup P^C, \\ \sum \limits_{\substack{\beta_i^k \in m_i}} l_i^k \cdot d_i^k & \text{if } p_i \in P^B. \end{cases}$

The marking:

$$\begin{array}{ll} m_1 = 4, & m_2 = 0, \\ m_3 = \{\beta_3^1\}, \beta_3^1 = (4, 1, 4), \\ m_4 = \{\beta_4^1, \beta_4^2\}, \beta_4^1 = (2, 1, 2), \ \beta_4^2 = (3, 2, 5). \\ \hline \text{The marking quantity:} \end{array}$$

Firing flow vectors

The instantaneous firing flow vector at time τ is denoted as $\varphi(\tau) \in \mathbb{R}^{|\mathcal{T}|}$, where $\varphi_j(\tau) \leq \Phi_j$ represents the firing quantity of transition t_j by time unit.

The controlled firing flow vector, denoted as $u(\tau)$, with $0 \le u_j(\tau) \le \Phi_j$, controls the evolution of the net.

Remark: in an invariant behavior state, both firing flow vectors remain constant (between timed events).

At $\tau_0 = 0$, transition t_1 is enabled while t_2 and t_3 are not enabled.

The instantaneous firing flow vector is: $\varphi(\tau_0) = [2 \ 0 \ 0]^T$.

The controlled firing flow vector is: $\boldsymbol{u}(\tau_0) = [\boldsymbol{u}_1(\tau_0) \ 0 \ 0]^T$ with $0 \le \boldsymbol{u}_1(\tau_0) \le 2.$

200

Steady state and regular marking

Let $\langle N, m_0 \rangle$ be a cGBPN with $P^D = T^D = \emptyset$. The net is in a steady state at time τ_s if for $\tau \ge \tau_s$ the marking m^s and the instantaneous firing flow vector φ^s remain constant.

In a steady state $(\mathbf{m}^s, \varphi^s)$ with $\varphi^s > 0$, the marking of a batch place p_i takes one of the following regular form:

(1) A single batch:
$$m_i^s = \{\beta_i^o\}$$
 with $\beta_i^o = (s_i, d_i^o, s_i)$.

2 Two batches:
$$m_i^s = \{\beta_i^e, \beta_i^o\}$$
 with $\beta_i^e = (l_i^e, d_i^e, l_i^e), \beta_i^o = (l_i^o, d_i^{\max}, s_i)$.

In a steady state, the marking quantity of batch place p_i is called the steady marking quantity, denoted as q_i^s with $q_i^s = q_i^{f,s} + q_i^{a,s}$.

Ruotian Liu, Rabah Ammour, Leonardo Brenner, Isabel Demongodin

Control trajectory

Objective

Control the transient behavior to reach a target steady state from a given initial state in generalized batches Petri nets.

Control trajectory

Given a cGBPN system $\langle N, m_0 \rangle$, a control trajectory to reach a steady state (m^s, φ^s) is given as $(u^0, \tau_0), (u^1, \tau_1), \cdots, (u^i, \tau_i), \cdots, (u^s, \tau_s)$ such that the controlled firing flow vector u^i is applied from date τ_i until the next event date τ_{i+1} and, $u^s = \varphi^s$.

For a cGBPN without discrete nodes:

$$\boldsymbol{q}^{s} = \boldsymbol{q}(\tau_{s}) = \boldsymbol{q}^{0}(\tau_{0}) + \boldsymbol{C} \cdot (\int_{\tau_{0}}^{\tau_{1}} \boldsymbol{u}^{0}(\rho) d\rho + \dots + \int_{\tau_{i}}^{\tau_{i+1}} \boldsymbol{u}^{i}(\rho) d\rho + \dots + \int_{\tau_{s}}^{\infty} \boldsymbol{u}^{s}(\rho) d\rho),$$

8/19

where $\int_{\tau_i}^{\tau_{i+1}} \boldsymbol{u}^i(\rho) \cdot d\rho$ denotes the sum of firing quantity of continuous or batch transitions during time interval $[\tau_{i-1}, \tau_i]$ and, $C \cdot \int_{\tau_i}^{\infty} \boldsymbol{u}^s(\rho) d\rho = 0$.

Control strategy

Given a cGBPN system $\langle N, \boldsymbol{m}_0 \rangle$ and a reachable steady state $(\boldsymbol{m}^s, \varphi^s)$.

Assumptions

- A1 No discrete nodes ($P^D = T^D = \emptyset$).
- A2 The steady firing flow vector is positive ($\varphi^s > 0$).
- A3 The net is conservative.

Control strategy

- **(D)** ON_{ss}: maximize $u_j(\tau)$ to φ_j^s if t_j is enabled with $\exists p_k \in t_j^{\bullet} : q_{k,j}^{rs}(\boldsymbol{m}) \leq q_k^{f,s}$.
- **2** ON_{max}: maximize $u_j(\tau)$ to Φ_j if t_j is enabled with $\nexists p_k \in t_j^{\bullet} : q_{k,j}^{rs}(\boldsymbol{m}) \le q_k^{f,s}$.
- **3** OFF: $u_j(\tau) = 0$ if t_j is not enabled or if t_j is enabled with $\exists p_i \in {}^{\bullet}t_j : q_i(\tau) < q_i^s$ and $\exists p_k \in t_j^{\bullet} : q_{k,j}^{rs}(\boldsymbol{m}) \le q_k^{f,s}$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ◆ ○ へ ○ 9/19

Control strategy

The condition for switching the controlled flow of transition t_j from the maximal flow to the steady flow is:

$$q_{i,j}^{rs}(\boldsymbol{m}) \leq q_i^{f,s},$$

where $q_{i,j}^{rs}(\boldsymbol{m})$ is the minimum remaining quantity that enters a place p_i for reaching the steady marking quantity vector.

Algorithm for controlling the transient behavior

Algorithm Computation of control trajectory

$$\begin{array}{ll} (e) \ C \ (p_k, \cdot) \cdot \boldsymbol{u}^i \ge 0 & \forall p_k \in P_{\emptyset}(\boldsymbol{m}^i) \\ (f) \ C \ (p_k, \cdot) \cdot \boldsymbol{u}^i = 0 & \forall p_k \in S_{\mathcal{IE}}(\boldsymbol{m}^i) \\ (g) \ \operatorname{Post}(p_k, \cdot) \cdot \boldsymbol{u}^i \le V_k \cdot d_k^{\max} & \forall p_k \in P^B \\ (h) \ \operatorname{Pre}(p_k, \cdot) \cdot \boldsymbol{u}^i \le V_k \cdot d_k^{\max} & \forall p_k \in P^B \end{array}$$

- 5: Determine all the next timed events from considered ones, select the nearest at time τ_{i+1}
- 6: Determine the new marking m^{i+1} , the marking quantity vector q^{i+1} and the current firing quantity vector z^{i+1}

𝔄𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔄
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤
𝔤

- 7: i = i + 1
- 8: end while
- 9: $\boldsymbol{u}^{\prime} = \boldsymbol{\varphi}^{s}$
- 10: Return $(u^0, \tau_0), (u^1, \tau_1), \cdots$

Example

The initial state is $\boldsymbol{m}_0 = [8 \ 8 \ \emptyset \ \emptyset]^T$.

The steady state is $\boldsymbol{m}^{s} = [4 \ 0 \ \{(4,1,4)\} \ \{(2,1,2),(3,2,5)\}]^{T}$, $\boldsymbol{\varphi}^{s} = [1 \ 1 \ 1]^{T}$.

Example

At $\tau_0 = 0$, the marking is $\boldsymbol{m}_0 = [8 \ 8 \ \emptyset \ \emptyset]^T$.

At $\tau_1 = 2$, the marking is $\mathbf{m}^1 = [4 \ 8 \ \{(2,2,2)\} \ \emptyset]^T$.

Conditions: $q_{3,1}^{rs}(\tau_0) = 12 > q_3^{f,s} = 4.$

The controlled firing flow vector is $\boldsymbol{u}^0 = [2 \ 0 \ 0]^T$.

 $\begin{array}{l} \text{Events:} \ q_1(\tau_1) = q_1^s, \\ q_3(\tau_1) = q_3^s. \\ \text{Conditions:} \\ q_{3,1}^{\prime s}(\tau_1) = 8 > q_3^{f,s} = 4. \end{array}$

The controlled firing flow vector is $\boldsymbol{u}^1 = [2 \ 0 \ 0]^T$.

900

13/19

Examples

Example

At $\tau_2 = 4$, the marking is $\mathbf{m}^2 = [0 \ 8 \ \{(4,2,4)\} \ \emptyset]^T$.

Events: $q_1(\tau_2) = 0$, $q_3(\tau_2) = 8.$ Conditions: $q_{3,1}^{rs}(\tau_2) = q_3^{f,s} = 4.$ $q_{4,2}^{rs}(\tau_2) = 8 > q_{4}^{f,s} = 2.$

The controlled firing flow vector is $u^2 = [0 \ 2 \ 0]^T$.

Events: $q_1(\tau_3) = q_1^s$, $q_3(\tau_3) = q_3^s$. Conditions: $q_{4,2}^{rs}(\tau_3) = 4 > q_4^{f,s} = 2.$

The controlled firing flow vector is $u^3 = [1 \ 2 \ 0]^T$.

900

Example

Control trajectory: $(u^0, 0), (u^1, 2), (u^2, 4), (u^3, 6), (u^4, 7), (u^5, 8), (u^6, 9), (u^7, 10).$

- The delay is $\tau_s = 10 \ u.t.$
- The number of events is 7.

Case study

The initial state is $m_0 = [0 \ 0 \ 10 \ \{(3,4,4)\} \ \{(2.5,2,5)\} \ \emptyset]^T$.

The steady state is $\boldsymbol{m}^{s} = [10 \ 0 \ 0 \ ((4, 0.5, 4))] \{(5, 1, 5)\} \ \{(2, 1, 2), (2, 4, 4)\}]^{T},$ $\boldsymbol{\varphi}^{s} = [4 \ 2 \ 2 \ 2 \ 2]^{T}.$

Case study

Using maximal flow based ON/OFF control strategy, the steady state is reached from the initial one within:

- the delay $\tau_s = 2.5 \ u.t.$
- the number of events 5.

Using steady flow based ON/OFF control strategy developed in our previous work, the steady state is reached from initial one within:

17/19

- the delay $\tau'_s = 5 \ u.t.$
- the number of events 5.

The transient behavior delay is reduced while the number of events is equal.

Conclusions

We propose a strategy for controlling the transient behavior of a dynamical system represented by a hybrid formalism, a generalised batches Petri net.

This control strategy, called maximal flow based ON/OFF control strategy, allows the system to reach a target steady state from an initial state.

18/19

It is based on:

- a pure event driven dynamics,
- a control variables defined on the firing flow of transitions,
- Ithe maximization of firing flows to their maximal values.

Thanks for your attention!

19/19

Ruotian Liu, Rabah Ammour, Leonardo Brenner, Isabel Demongodin ON/OFF control in batches Petri nets