Vehicle Scheduling Problem in Terminals: a Review Presenter:

Pei Wang, wangpei@cmhk.com

- Background and Problems
- Fleet Sizing Problem
- Vehicle Dispatching Problem
- Path Planning Problem
- Conclusions and Outlook

Background

Large proportion of international trade(90% of China's export trade)

The rapid growth of maritime traffic

• The cost of maritime traffic is small (1/10 of rail transportation)

Mathematic Model Analysis

Fleet Sizing

Assumptions

Vehicle speed Crane efficiency

Algorithms

Tabu algorithm Minimum flow algorithm

Different situation

Static system Time-window

StrengthsRoughly estimateReference valueWeaknessAssumptions are too idealHard to deal with random situations

Simulation Analysis

Target Para

Vehicle idle time Waiting time of other machines

Parameter

Vehicle number

Simulation tools

SIMUN ARENA SIMU8...

StrengthsMore suitable for the real working environmentWeaknessPoor robustness

Classic Rule Strategy

Classic Rule Strategy

Greedy search based on basic target

Random Vehicle (RV) Shortest Travel Distance (STD) Longest Travel Distance (LTD) Minimum Queue (MQ)

Network flow formulation

Fuzzy theory with multiple –criteria

Method combined with layout

Strengths

Fast calculation

Weakness

Poor robustness

Easy to adjust parameters

Bad performance on large-scale problems

Heuristic Strategy

Heuristic Strategy

Search algorithm improvement

Genetic Algorithm Immune Algorithm

Combine with other algorithm

Mix-integer programming with heuristic algorithm

Multi-objective evolutionary algorithm (MOEA)

Fuzzy-theory with Ant Colony Optimization and Genetic Algorithm (HACOGA)

More factors are concerned

Delay of container transports Vehicle pool method

Strengths Good performance on large-scale problems / complex calculation

Weakness Poor robustness

Machine Learning

Simulation-based strategy

online calculating important parameters

Machine Learning Method

→ Basic learning strategy

Q-Learning, Reinforcement learning

Online learning strategy

Improve adaptability to the environment

Strengths Good robustness

Weakness High data requirements

Description Find best paths for vehicles

Path Planning

Traditional methods & their improvement Graph search strategy: A* , Dijsktra Real-time updating for edges' weight Jump point search Angle evaluation Combine A* with visibility diagram planning

• Configuration space algorithm (CSA)

Artificial potential field (APF)
Dynamic artificial potential field
Speed factor is added
virtual obstacle
Associate target

Weakness Hard to balance computation time and performance

Path Planning

Intelligent methods

Fuzzy logic control

Combined with artificial potential field Use PSO algorithm to optimize the threshold Minimum-risk approach Virtual force field technique

Genetic algorithm (GA)

Adaptive multi-object genetic algorithm (AMOGA) Quantum genetic algorithm

' Neural network algorithm

Multi-scale map method

Wave expansion neural network (WENN)

Weakness Tendency of falling into local minima

Fleet sizing problem

Ideal assumptions Poor versatility

Combine simulation and theoretical basis

Vehicle dispatching problem

Few studies directly focus on the efficiency of QC

Data driven method

Simulation method

Path planning problem

Few researches on online path change

Balance computation time & performance

Faster computation

Dynamic solution

THANKS!

Q&A

Q&A