Deadlock Avoidance of Flexible Manufacturing Systems by Colored Resource-Oriented Petri Nets With Novel Colored Capacity

ZhaoYu Xiang
Institute of System Engineering, Macau University of Science and Technology 79761711@qq.com

October 26

Overview

(1) Research Background
(2) Colored capacity

CROPN

Creator

The concept of colored resource-oriented petri nets (CROPN) is proposed by Professor Wu's work.

feature 1

resource-oriented modeling method

```
feature 2
colors and capacity
```


CROPN modeling method

process plan

Part types A and B. Plane for $A: r_{1} \rightarrow r_{2}$. Plane for $B: r_{1} \rightarrow r_{2} \rightarrow r_{3}$

resource-oriented

place p_{1} for r_{1}, p_{2} for r_{2}, and p_{3} for r_{3}.

CROPN color

color

Token with color $t_{i} \in T$ can only enable transition t_{i}.

notation

We use $M(p, t)$ to represent the number of tokens with color t in place p at marking M.

CROPN color assumption

Remark

The work in Professor Wu assume that the color of a token will changed when this token goes from a place to another and the change of color is decided by a process plan and is known in advance.

For instance, for part $B: p_{1} \rightarrow p_{2} \rightarrow p_{3}:$ token $\left(p_{1}, t_{2}\right) \rightarrow$ token $\left(p_{2}, t_{3}\right) \rightarrow$ token $\left(p_{3}, t_{4}\right)$.

CROPN capacity

Figure: A simple example for illustration

capacity

We use $K(p)$ to denote the number of tokens the place p can hold.

CROPN

Control policy

To forbid bad markings.

Realization

To add control places to the net

Ideal of this paper

We introduce color into capacity and define the colored capacity to realize the given control policy without adding control places.

Colored capacity

Feature

We introduce color into capacity. Then we can restrict number of token with specific color in a place.

Colored capacity

Given a CROPN with marking M, let $K_{c}: P \times T \times M \rightarrow\{0,1, \ldots\}$ be the colored capacity such that for all $p \in P$, for all $t \in T$, for all marking M reachable from the initial marking, $K_{c}(p, t, M)$ represents the maximum free number of tokens with color t that p can hold at marking M.

For instance, if we set $K_{c}\left(p_{1}, t_{1}, M\right)=1$, then the free space for token with color t_{1} is one in place p_{1} at marking M.

CROPN control policy

Setting

$t_{1} \rightarrow$ token with color t_{3} or t_{1} in place $p_{1} . K\left(p_{1}\right)=2, K\left(p_{2}\right)=1$.

bad marking

$M\left(p_{1}, t_{1}\right)=2$ and $M\left(p_{2}, t_{2}\right)=1$.
control policy
$u_{1}: M\left(p_{1}, t_{1}\right)+M\left(p_{2}, t_{2}\right) \leq 2$.

CROPN

Control policy to be realized

$u_{1}: M\left(p_{1}, t_{1}\right)+M\left(p_{2}, t_{2}\right) \leq 2$.

Colored capacity

$K_{c}\left(p_{1}, t_{1}, M\right)=2-M\left(p_{1}, t_{1}\right)-M\left(p_{2}, t_{2}\right)$.
If $M\left(p_{1}, t_{1}\right)=1$ and $M\left(p_{2}, t_{2}\right)=1$, then we have $K_{c}\left(p_{1}, t_{1}, M\right)=0$.

Realization of control policy by colored capacity

Colored capacity

$K_{c}\left(p_{1}, t_{1}, M\right)=2-M\left(p_{1}, t_{1}\right)-M\left(p_{2}, t_{2}\right)$.

Contradiction

$M\left(p_{1}, t_{3}\right)=1$ and $M\left(p_{1}, t_{1}\right)=1, M\left(p_{2}, t_{2}\right)=0$, then we have $K_{c}\left(p_{1}, t_{1}, M\right)=1$, which contradicts $K\left(p_{1}\right)=2$.

Realization of control policy by colored capacity

Colored capacity

$K_{c}\left(p_{1}, t_{1}, M\right)=$ $\min \left[\left(2-M\left(p_{1}, t_{1}\right)-M\left(p_{2}, t_{2}\right)\right), K\left(p_{1}\right)-M\left(p_{1}, t_{1}\right)-M\left(p_{1}, t_{3}\right)\right]$

Thus if $M\left(p_{1}, t_{3}\right)=1$ and $M\left(p_{1}, t_{1}\right)=1, M\left(p_{2}, t_{2}\right)=0$, we have $K_{c}\left(p_{1}, t_{1}, M\right)=0$. Then we solve the contradiction above.

Conclusion

Remark 1

We do not consider how to obtain control policies.

Remark 1

Colored capacity is marking-variant.

Remark 2

Normal capacity:no color. Colored capacity:have color.

Contribution of this paper

We introduce color into capacity and define the colored capacity to realize the given control policy without adding control places.

Thanks

