
Wilfried Yves Hamilton

Multi-path Coverage of all Final States for
Model-Based Testing Theory using

Spark In-memory Design

14th International Conference on Verification and Evaluation of Computer and 
Communication Systems

26-27 October 2020

Keywords: Model-Based Testing · Coverage · Big Data · Big Graphs ·

Apache Spark · Apache Hadoop · Parallel and Distributed Computing

Tarik Nahhal Abdeltif Elbyed

Moez Krichen



Topics

❑ Context

❑ Problem of coverage 

❑ Proposed framework

❑ Experimental tests

❑ Conclusion and future directions

2



Finite State Machine (FSM)
• Overview

❑ FSM is a mathematical model of computation. 

❑ It is an abstract machine that can be in exactly one of a finite number of states 
at any given time. 

❑ The FSM can change from one state to another in response to some inputs; 
the change from one state to another is called a transition

3



Some use cases of FSM

4

▪Traffic light

▪ Combination lock

▪ Vending machine▪ Elevator



Problem of coverage

Goal: from s0, find all paths that cover the set of final states 
of F

Challenge: with state explosion, the search of all paths 
covering the final states of the system is very expensive.

Complexity: with NP-Hard problem 5



Related works
• Adamatzky (1996)

❑ Automata coverage based on all-shortest paths computation

• S. Rafe et . (2013)
❑ State explosion problem

❑ Explosion problem in model checking

❑ However, it is expensive in the execution time

• Bensalem et al. (2005)
❑ Distributed coverage automata

❑ Based on automatic generation of observers

• Moez et al. (2012)
❑ Distributed coverage framework

❑ Adapted for timed automata

6



Motivations
❑ Automata with state explosion takes enough of time.

❑ The coverage of big automata can become computationally expensive

❑ Shortest path computation requires very costly hardwares to achieve the 
computation

❑ Large-scale automata: No works dealing with the case 
of state space explosion problem in model chechking.

7



Fast distributed coverage approach based on Spark
• Our coverage is builded on top of Spark

❑ Suited for automata with state explosion

❑ Suited for dynamic automata

❑ Use commodity hardware

❑ Support Fault-tolerance

• Spark-Coverage based approach
❑ Based on Spark in-memory design

❑ Inspired by Adoni et al. (2018)

8



Spark-coverage overview

9Coverage time



Input phase: automaton partition
• Edge-partition technique (Guerrieri et al., 2015)

❑ The automata A is partitioned under n sub-
automaton.

❑ A = 𝐴1, 𝐴2, … , 𝐴𝑘 such as k is the the number 
of nodes into the cluster. 

❑ Each sub-automata 𝐴𝑖 is assigned to each node 
𝑖

❑ Each sub-automata 𝐴𝑖is delimited by its 
boundary.

❑ Frontier state 𝑥𝑖 is used to communicate 
between two sub-automata.

10



Input phase: automaton partition
• Illustration of 2-partition

11



Map phase: intermediate states coverage

• Map time
❑ The total time to complete all map tasks 

is calculated as follow:

• All coverage paths computating
❑ Each mapper is assigned to each sub-

automaton

❑ Run A* program on each sub-automaton



Reduce stage: merging all states coverage

• Reduce time
❑ The total time to complete all reduce 

tasks is calculated as follow:

• Aggregation of coverage paths
❑ Take mapper outputs

❑ Merge all paths wich share same 
frontier states



Experimental test
• Cluster configuration

❑ Ram : 15GB 

❑ CPU : Intel Core i5-2410M @ 2.30 GHz

❑ OS : Linux SUSE-3.0.101 32 bit

❑ Spark version: 2.4.0

master

slave 1 slave 2 slave 3



Experimental test
• Dataset



Experimental test
• Time complexity : sequential vs distributed



Experimental test
• Impact of number nodes on runtime



Conclusion
❑ We have proposed a parallel and distributed framework for 

larges-cale automaton coverage. 
❑ The time complexity decreases from exponential to linear time. 
❑ The experimental results prove that our approach is faster and 

works well with very large automaton. 
❑ But our approach presents some limitations: 
➢ Path optimality depends on the partitioning strategy and the number 

of sub-automatons 

➢ The computation is often memory expensive.

18



Futher works
❑ We are interested in studying the impact of automaton partitioning 

on the time complexity.

❑ Propose an extended version of the framework for the coverage of 
timed-automaton and distributed systems

19



Thank you

20

adoniwilfried@gmail.com

t.nahhal@fsac.ac.ma a.elbyed@fsac.ac.ma

moez.krichen@redcad.org 


