
Formal Verification of a Certified Policy Language

Amir Eaman
Amy Felty

School of Electrical Engineering and Computer Science (SITE)
University of Ottawa

Ottawa, Canada

Amir Amy

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 1 / 30

Introduction

Access Control is a security service that guards protected resources against unauthorized
access (Granting or rejecting access to resources is a very important aspect of
computer systems).

Policy Language is a language to express authorization policies (in the form of set of rules)

Type Enforcement An access control mechanism which exploits security context of resources
to regulate accesses (subject-object set of rules).

Certified Language By certified policy language, we mean a policy language with formal
semantics and mathematical proofs of important properties.

TEpla a new certified TE access control policy language called TEpla.

Access control policy languages, especially those that are widely used in practice, often do not
have formal semantics. Inconsistencies and contradictions in the design of a language can lead
to possibly serious unintended errors, especially as policies grow large.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 2 / 30

Motivation: Analysis of Access-Control SELinux Policies

The motivation comes from our previous work [Eaman, Sistany, Felty, MCETech, 2017]

For having a verified security policy, it is crucial to formally reason about the policy
language in which the policy is written.

The SELinux policy language requires third-party analysis tools to help security
administrators write policies and check various properties.

The inherent complexity of the SELinux policy language as well as its lack of formal
semantics have led to the development of many policy analysis tools to try to translate
SELinux policies to other intermediate language.

There is no proof for the correctness of policy analysis tools to make sure their results are
reliable.

Overall SELinux lacks clarity as an access control language. The clarity of an access
control policy language can provide better decision making for incremental policy writing,
ease of analysis, and ease of reasoning.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 3 / 30

Using a Certified TE Policy Language to Express TE policies

Our solution to the challenges mentioned earlier is a certified Type Enforcement policy
Language

A small and certifiably correct Type Enforcement policy language can be a good
candidate for SELinux style access control.

TEpla is a certified policy language.

The Coq Proof Assistant has been used to develop proofs for theorems

We analyzed the behavior of the language by defining different ordering relations on
policies, queries, and decisions.

The behavior of the language are presented by a set of formal properties including order
preservation, independent composition, non-decreasing, and determinism (defined in
[Tschantz, Krishnamurthi, SACMAT, 2006]). A deterministic language always produces
the same decision for the same policies and queries.

This insight into language behavior provides a formal way to analyze and reason about
language specifications, i.e., policies written in the language.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 4 / 30

Outline

1 Syntax in Coq

2 Ordering Relations on Decisions, Policies, Queries

3 Semantics in Coq

4 Conditions on Predicates

5 An Example Predicate to Express Separation of Duty (SoD)

6 Formal Language Properties of TEpla

7 Future Work and Conclusion

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 5 / 30

Syntax in Coq

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 6 / 30

The Coq Proof Assistant

A proof assistant to develop machine-checked proofs

Often used to verify the correctness of programs: Certified programs

Properties and proofs are formalized in a special language

Proofs are developed in a semi-interactive manner dependent on human guidance.

A further strength of Coq is that executable programs can also be extracted from
constructive proofs.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 7 / 30

TEpla Syntax and its Encoding in Coq

Definition C := N.
Definition P := N.
Definition basicT := N.
(* examples *)

Definition File : C := 600.
Definition mail_t : basicT := 300.
Definition Read : P := 702.
Definition networkManager_ssh_t : basicT := 302.

Definition G : Set := list (basicT).
Inductive T : Type:=
| singleT : basicT → T
| groupT : G → T.

(* examples *)

Definition program_G : G := [mail_t ; http_t].
Definition program_T : groupT program_G.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 8 / 30

TEpla Syntax and its Encoding in Coq (contd.)

Inductive R : Set :=
| Allow : T ∗ T ∗ C ∗ P ∗ B → R
| Type_Transition : T ∗ T ∗ C → R.

(* example *)

Definition R_A : R :=
Allow (groupT program_G, singleT mail_t , File , Read , true).

Inductive CSTE: Set :=
| Constraint : C ∗ P ∗ T ∗ T ∗ list T ∗

(list R→ list T→ C→ P→
T→ T→ T→ T→ B) → CSTE.

(* example *)

Definition CSTE_SoD : CSTE:= Constraint(File, Read, groupT program_G,
singleT networkManager_ssh_t , [], Prd_SoD).

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 9 / 30

TEpla Syntax and its Encoding in Coq (contd.)

Inductive TEPLCY: Set :=
| TEPolicy : list R ∗ list CSTE→ TEPLCY.

Definition Q : Set :=
T ∗ T ∗ C ∗ P .

(* example *)

Definition sampleQ : Q := (singleT mail_t , singleT http_t , File , Write).

Inductive DCS: Set :=
| Permitted | NotPermitted | UnKnown .

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 10 / 30

Ordering Relations on Decisions, Policies, Queries

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 11 / 30

Ordering Relations (poset)

(TEPLCY,.) We define the binary relation . on two policies p1, p2, where p1 . p2

whenever p2 has more information that p1. More formally:

∀(p1, p2 ∈ TEPLCY), p1 . p2 iff length(p1) 6 length(p2) ∧ p1 ⊆ p2.

(Q, <<=) In TEpla,Two queries Q1 = (SourceT Q1, DestT Q1, C1, P1) and Q2 =
(SourceT Q2, DestT Q2, C2, P2) are in relation Q1 <<= Q2 if and only if
(TSubset SourceT Q2 SourceT Q1) and (TSubset DestT Q2 DestT Q1) hold.

(DCS,<::) We define the binary relation “<::” on this three element set as
NotPermitted <:: Permitted <:: UnKnown to define the poset (DCS,<::)

The UnKnown decision arises from conflicts in policies. The semantics of TEpla is a
homomorphism on the posets we defined on TEPLCY, Q and DCS.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 12 / 30

Semantics in Coq

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 13 / 30

Semantics in Coq - Evaluating Queries Against Policy Rules

Evaluating a query against single rule:

Definition R_EvalTE (R_policy :R) (q :Q) : DCS:=
match R_policy with

| Allow (alw_srcT,alw_dstT,alw_C,alw_P ,alw_B) ⇒
match q with

|(qsrcT, qdsT, qC, qP) ⇒
if ((TSubset qsrcT alw_srcT) && (TSubset qdsT alw_dstT) &&

(Nat . eqb qC alw_C) && (Nat.eqb qP alw_P) && (alw_B)
then Permitted else NotPermitted

end

|Type_Transition (trn_srcT, trn_dstT, trn_C) ⇒ ...
end .

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 14 / 30

Semantics in Coq (contd.) - Evaluating a list of TErule

Evaluation of a query against a list of rules:

Fixpoint listR_EvalTE
(listR: list R) (qry : Q) : DCS:=
match listR with

| rule_h :: rule_body ⇒
maximalDCS (R_EvalTE rule_h qry)

(listR_EvalTE rule_body qry)
|[] ⇒ NotPermitted

end .

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 15 / 30

Semantics in Coq (contd.)-Evaluating Queries against Constraints

After evaluating a query against the list of rules in the policy, we evaluate the query against
constraints. This function evaluates a query against a constraint.

Definition CSTE_EvalTE
(constraint_rule :CSTE) (Q_to_constr:Q) (listR:list R) : DCS:=

match constraint_rule with

| Constraint (cstrn_C, cstrn_P , cstrn_T_arg1 , cstrn_T_arg2 ,
cstrn_listT,cstrn_PRDT) ⇒

match Q_to_constr with

|(Q_srcT, Q_dstT, Q_C, Q_P) ⇒
if (Nat . eqb Q_C cstrn_C && Nat.eqb Q_P cstrn_P) then

match (cstrn_PRDT listR cstrn_listT cstrn_C cstrn_P
Q_srcT Q_dstT cstrn_T_arg1 cstrn_T_arg2) with

| true ⇒ Permitted

| false ⇒ UnKnown

end

else NotPermitted

end

end .

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 16 / 30

Semantics in Coq (contd.) - Finding the decisions of policies

This function takes two decisions as arguments and applies the logic of combining the
decisions of the two components of policies.

Definition maximalpolicy_DCS
(compont_R compont_CSTE : DCS) : DCS:=

if(Permitted <:: compont_R) then

maximalDCS compont_R compont_CSTE
else NotPermitted .

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 17 / 30

Semantics in Coq (contd.) - Evaluating a query against a policy

The functions for evaluating a query against a set of rules and a set of constraints and calling
the helper function maximalpolicy DCS to combine the results.

Fixpoint TEPLCY_EvalTE
(policy : TEPLCY) (q: Q) : DCS:=
match policy with

| TEPolicy (CompOne_RList, CompTwo_CSTEList) ⇒
maximalpolicy_DCS
(listR_EvalTE CompOne_RList q)
(listCSTE_EvalTE CompTwo_CSTEList q CompOne_RList) end.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 18 / 30

Conditions on Predicates

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 19 / 30

Conditions on Predicates

Predicates defined by policy writers must satisfy three conditions and they must prove these
conditions are met. The conditions are:

1 Predicate Q condition: Evaluating predicates given any two queries Q1 and Q2 such
that Q1 <<= Q2, if d1 and d2 are the decisions resulting from evaluating Q1 and Q2,
respectively, then d1 <:: d2

2 Predicate plc cdn: states that the same result is obtained from applying the predicate
on the two lists of rules, whenever the two lists differ only in the order of the rules.

3 Predicate plc cdn Transition: given a query Q and two rule lists listR, and listR
++ listR′, if d1 and d2 are the decisions resulting from evaluating Q against the list of
constraints, respectively, then d1 <:: d2

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 20 / 30

An Example Predicate to Express Separation of Duty (SoD)

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 21 / 30

Encoding SoD security goal

Fixpoint Prd_SoD (listR:list R) (ListT:list T) (sClass :C) (perm :P)
(QSrcT:T) (QDesT:T) (PRDTsrcT:T) (PRDTDesT:T) : B:=

if (TSubset QSrcT PRDTsrcT && TSubset QDesT PRDTDesT)
then is_emptylistT (IntersectionList

(listRSearch_subjectTs listR PRDTsrcT)
(listRSearch_subjectTs listR PRDTDesT))

else true .

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 22 / 30

Verifying the predicate Prd SoD

Verifying the predicate Prd SoD satisfies the three conditions on predications:

Lemma qry_condition_SoDPRDT:
Predicate_Q_condition Prd_SoD .

Lemma plc_conditionS_SoD PRDT:
Predicate_plc_cdn Prd_SoD .

Lemma plc_conditionF_SoD PRDT:
Predicate_plc_cdn_Transition Prd_SoD .

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 23 / 30

Formal Language Properties of TEpla

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 24 / 30

Order Preservation of TEpla Queries

Order Preservation

Of particular importance is the preservation of order on decisions with respect to queries: if
q1 <<= q2, then the decisions d1 and d2 that result applying function TEPLCY EvalTE on
q1 and q2, respectively, are in the relation d1 <:: d2.

Theorem Order_Preservation_TEpla :
∀ (listR:list R) (listCSTE:list CSTE) (q q’ : Q),

(q <<= q’) ∧ const_imp_prd_List listCSTE →
((TEPLCY_EvalTE (TEPLCY (listR, listCSTE)) q) <::
(TEPLCY_EvalTE (TEPLCY (listR, listCSTE)) q’)) = true.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 25 / 30

Non-Decreasing Property of TEpla Policies

Non-Decreasing

This theorem states that adding a policy Single pol, to any list of policies Pol list can
change the decisions only according to the order relation <:: on decisions.The ⊕ operator
extracts the rule lists of all the policies in its argument list of policies and combines them into
one list, and similarly for constraints, forming a single policy from these rules and constraints.

Theorem Non_Decreasing_TEpla :
∀ (Pol_list: list TEPLCY) (Single_pol:TEPLCY) (q:Q) (d d’: DCS),
validCnstrtListPolicy Pol_list ∧ validConstrt Single_pol →

(TEPLCY_EvalTE (⊕ (Pol_list)) q) = d →
(TEPLCY_EvalTE (⊕ (Single_pol::Pol_list)) q) = d’ →
(d <:: d’) = true.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 26 / 30

Independent Composition of TEpla Policies

Independent Composition

The independent composition theorem states that whenever a pair of lists satisfies this
property, then the decision obtained by evaluating the combined policy on q is the maximum
of the decisions resulting from evaluating each policy independently.

Theorem Independent_Composition :
∀ (PLCY_DCS_pair : list (TEPLCY ∗ DCS)) (q : Q) (dstar : DCS),
Foreach q (map fst PLCY_DCS_pair) (map snd PLCY_DCS_pair) ∧
(TEPLCY_EvalTE (⊕ (map fst PLCY_DCS_pair)) q) = dstar →
(maximum (map snd PLCY_DCS_pair) <:: dstar) = true.

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 27 / 30

Future Work and Conclusion

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 28 / 30

Conclusion and Future Work

The infrastructure as well as formal properties of TEpla is encoded in the Coq proof
assistant.

TEpla is certified in terms of formal semantics and machine-checked proofs of a particular
set of properties.

TEpla provides the language constructs for allowing security administrators to encode
different security goals in policies.

TEpla is a certified solution for challenges and drawbacks that security administrators
face in developing or analyzing security policies.

There are some limitations in the language, such as the limited number of arguments for
constraints

The certification of TEpla done so far will help with the development of the next versions
of TEpla.

Program extraction is possible to OCaml, Scheme, Haskell

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 29 / 30

Thank you for your attention. Questions?

Links:

TEpla Coq Code: TEpla Coq code

Modeling and Analysis of Access-Control Policies (SELinux):
Modeling and Analysis of access-control policies

References:

Eaman, A.: TEpla: A Certified Type Enforcement Access Control Policy Language.,Ph.D.
thesis, University of Ottawa (2019), TEpla: A Certified TE Policy Language

Eaman, A., Sistany, B., Felty, A.: Review of existing analysis tools for SELinux security
policies: Challenges and a proposed solution. In: 7th International Multi-disciplinary
Conference on e-Technologies (MCETECH). pp. 116–135 (2017) SELinux Policy Challenges

Amir Eaman (uOttawa) Formal Verification of a Certified Policy Language October 6, 2020 30 / 30

http://www.site.uottawa.ca/~afelty/vecos20/
 https://www.mitacs.ca/en/projects/modeling-and-analysis-access-control-policies-selinux-andor-smack
https://ruor.uottawa.ca/handle/10393/39876
https://link.springer.com/chapter/10.1007/978-3-319-59041-7_7

	Syntax in Coq
	Ordering Relations on Decisions, Policies, Queries
	Semantics in Coq
	Conditions on Predicates
	An Example Predicate to Express Separation of Duty (SoD)
	Formal Language Properties of TEpla
	Future Work and Conclusion

