
An Evaluation of Estimation Techniques
for Probabilistic Verification

Mariia Vasileva and Paolo Zuliani

School of Computing
Newcastle University

Newcastle upon Tyne, UK

M. Vasileva VECoS 2020 1 / 19

Hybrid Systems

q1

flowq1 (p)

invtq1 (p)

q2

flowq2 (p)

invtq2 (p)

init(p)

jump(q1,q2)(p)

reset(q1,q2)(p)

jump(q2,q1)(p)

reset(q2,q1)(p)

Parametric Hybrid System (PHS)

p ∈ P – parameter

P 6= ∅ – parameter space
dp
dt = 0

Stochastic PHS (SPHS)

PHS with random parameters

init and reset – numerically “type 2 computable functions”
flow – Lipschitz-continuous ODEs

invt and jump – Boolean logic formula
m∧
i=1

(ki∨
j=1

(
fi ,j(x,p) ◦ 0

))
◦ ∈ {>,≥}
fi,j – numerically “type 2 computable functions”

M. Vasileva VECoS 2020 2 / 19

Hybrid Systems

q1

flowq1 (p)

invtq1 (p)

q2

flowq2 (p)

invtq2 (p)

init(p)

jump(q1,q2)(p)

reset(q1,q2)(p)

jump(q2,q1)(p)

reset(q2,q1)(p)

Parametric Hybrid System (PHS)

p ∈ P – parameter

P 6= ∅ – parameter space
dp
dt = 0

Stochastic PHS (SPHS)

PHS with random parameters

init and reset – numerically “type 2 computable functions”
flow – Lipschitz-continuous ODEs

invt and jump – Boolean logic formula
m∧
i=1

(ki∨
j=1

(
fi ,j(x,p) ◦ 0

))
◦ ∈ {>,≥}
fi,j – numerically “type 2 computable functions”

M. Vasileva VECoS 2020 2 / 19

Hybrid Systems

q1

flowq1 (p)

invtq1 (p)

q2

flowq2 (p)

invtq2 (p)

init(p)

jump(q1,q2)(p)

reset(q1,q2)(p)

jump(q2,q1)(p)

reset(q2,q1)(p)

Parametric Hybrid System (PHS)

p ∈ P – parameter

P 6= ∅ – parameter space
dp
dt = 0

Stochastic PHS (SPHS)

PHS with random parameters

init and reset – numerically “type 2 computable functions”
flow – Lipschitz-continuous ODEs

invt and jump – Boolean logic formula
m∧
i=1

(ki∨
j=1

(
fi ,j(x,p) ◦ 0

))
◦ ∈ {>,≥}
fi,j – numerically “type 2 computable functions”

M. Vasileva VECoS 2020 2 / 19

Hybrid Systems

q1

flowq1 (p)

invtq1 (p)

q2

flowq2 (p)

invtq2 (p)

init(p)

jump(q1,q2)(p)

reset(q1,q2)(p)

jump(q2,q1)(p)

reset(q2,q1)(p)

Parametric Hybrid System (PHS)

p ∈ P – parameter

P 6= ∅ – parameter space
dp
dt = 0

Stochastic PHS (SPHS)

PHS with random parameters

init and reset – numerically “type 2 computable functions”
flow – Lipschitz-continuous ODEs

invt and jump – Boolean logic formula
m∧
i=1

(ki∨
j=1

(
fi ,j(x,p) ◦ 0

))
◦ ∈ {>,≥}
fi,j – numerically “type 2 computable functions”

M. Vasileva VECoS 2020 2 / 19

Bounded Probabilistic Reachability: Thermostat

Bounded k-step reachability in SPHSs aims to find the probability
that for the given initial conditions, the system reaches a bad state in
k discrete transitions.

What is the probability of reaching the bad region?

The probability can be computed as an integral of the form
∫
G dP

G denotes the set of all random parameter values for which the system
with random parameters reaches a bad state in k steps.
P is the probability measure associated with the random parameters.

M. Vasileva VECoS 2020 3 / 19

Bounded Probabilistic Reachability: Thermostat

Bounded k-step reachability in SPHSs aims to find the probability
that for the given initial conditions, the system reaches a bad state in
k discrete transitions.

What is the probability of reaching the bad region?

The probability can be computed as an integral of the form
∫
G dP

G denotes the set of all random parameter values for which the system
with random parameters reaches a bad state in k steps.
P is the probability measure associated with the random parameters.

M. Vasileva VECoS 2020 3 / 19

Bounded Probabilistic Reachability: Thermostat

Bounded k-step reachability in SPHSs aims to find the probability
that for the given initial conditions, the system reaches a bad state in
k discrete transitions.

What is the probability of reaching the bad region?

The probability can be computed as an integral of the form
∫
G dP

G denotes the set of all random parameter values for which the system
with random parameters reaches a bad state in k steps.
P is the probability measure associated with the random parameters.

M. Vasileva VECoS 2020 3 / 19

Integral Estimation Methods

Formal Approach (Exhaustive Search)

Absolute numerical guarantees.
Performance crucially depends on the number of parameters.

Sampling Approach (Quasi-Monte Carlo (QMC)/ Monte Carlo
methods (MC))

Statistical numerical guarantees (still works OK).
Scales better with the number of parameters.
We have implemented The QMC approach in ProbReach - a tool for
probabilistic bounded reachability analysis in SPHS (Shmarov &
Zuliani, HSCC 2015). [SZ15]

M. Vasileva VECoS 2020 4 / 19

Integral Estimation Methods

Formal Approach (Exhaustive Search)

Absolute numerical guarantees.
Performance crucially depends on the number of parameters.

Sampling Approach (Quasi-Monte Carlo (QMC)/ Monte Carlo
methods (MC))

Statistical numerical guarantees (still works OK).
Scales better with the number of parameters.
We have implemented The QMC approach in ProbReach - a tool for
probabilistic bounded reachability analysis in SPHS (Shmarov &
Zuliani, HSCC 2015). [SZ15]

M. Vasileva VECoS 2020 4 / 19

Integral Estimation Methods: QMC vs Randomised QMC

QMC methods select the points deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967):

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while

the MC error is O
(

1√
N

)
, where N is the sample size.

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used.

We can successfully use Randomised QMC (RQMC) methods:
Suppose X = {x1, ..., xn} - a low-discrepancy set: by transformation
X̃ = Γ(X, ξ) a finite set X̃ is generated by the random variable ξ.

M. Vasileva VECoS 2020 5 / 19

Integral Estimation Methods: QMC vs Randomised QMC

QMC methods select the points deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967):

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while

the MC error is O
(

1√
N

)
, where N is the sample size.

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used.

We can successfully use Randomised QMC (RQMC) methods:
Suppose X = {x1, ..., xn} - a low-discrepancy set: by transformation
X̃ = Γ(X, ξ) a finite set X̃ is generated by the random variable ξ.

M. Vasileva VECoS 2020 5 / 19

Integral Estimation Methods: QMC vs Randomised QMC

QMC methods select the points deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967):

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while

the MC error is O
(

1√
N

)
, where N is the sample size.

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used.

We can successfully use Randomised QMC (RQMC) methods:
Suppose X = {x1, ..., xn} - a low-discrepancy set: by transformation
X̃ = Γ(X, ξ) a finite set X̃ is generated by the random variable ξ.

M. Vasileva VECoS 2020 5 / 19

Intervals Based on the Beta-Function

Figure 1: Alternative intervals based on the Beta-function

These intervals compute the posterior distribution of the unknown
quantity by using its prior distribution.

The standard PDF of beta distribution is represented by the formula

Beta(α, β) = xα−1(1−x)β−1

B(α,β) , where 0 ≤ x ≤ 1; α, β > 0 and B(α, β)

is the Beta-Function defined as B(α, β) =
∫ 1

0 tα−1(1− t)β−1dt.

If a parameter value p has a prior distribution Beta(α, β) then after n
Bernoulli trials with ns successes, p has posterior distribution
Beta(ns + α, n − ns + β).

M. Vasileva VECoS 2020 6 / 19

Intervals Based on the Beta-Function

Figure 1: Alternative intervals based on the Beta-function

These intervals compute the posterior distribution of the unknown
quantity by using its prior distribution.

The standard PDF of beta distribution is represented by the formula

Beta(α, β) = xα−1(1−x)β−1

B(α,β) , where 0 ≤ x ≤ 1; α, β > 0 and B(α, β)

is the Beta-Function defined as B(α, β) =
∫ 1

0 tα−1(1− t)β−1dt.

If a parameter value p has a prior distribution Beta(α, β) then after n
Bernoulli trials with ns successes, p has posterior distribution
Beta(ns + α, n − ns + β).

M. Vasileva VECoS 2020 6 / 19

Intervals Based on the Standard CLT Interval

Figure 2: Intervals based on the Standard CLT interval

We also consider modified Qint method presented by Ermakov
Antonov, which is based on the random quadrature formulas.

M. Vasileva VECoS 2020 7 / 19

Intervals Based on the Standard CLT Interval

Figure 2: Intervals based on the Standard CLT interval

We also consider modified Qint method presented by Ermakov
Antonov, which is based on the random quadrature formulas.

M. Vasileva VECoS 2020 7 / 19

Modified CLT interval

Standard CLT Confidence Interval (CI)

CICLT =

(
X̃ − Ca

σ√
N

; X̃ + Ca
σ√
N

)
N is the number of samples

X̃ = 1
N

∑N
i=1 xi

parameter a defines confidence level at c = 1 − a.

σ - standard deviation of the samples x1, ...xN

Ca = Quant(1 − a
2
) is the inverse CDF of a Gaussian distribution with parameters

(0,1).

Unfortunately, in practice the variance σ2 is unknown.

Modified CLT Interval

We can use CICLT by replacing σ to sample standard deviation s = 1
N2 at

the initial stages of the computation if X̃ is equal to 0 (or 1).

M. Vasileva VECoS 2020 8 / 19

Modified CLT interval

Standard CLT Confidence Interval (CI)

CICLT =

(
X̃ − Ca

σ√
N

; X̃ + Ca
σ√
N

)
N is the number of samples

X̃ = 1
N

∑N
i=1 xi

parameter a defines confidence level at c = 1 − a.

σ - standard deviation of the samples x1, ...xN

Ca = Quant(1 − a
2
) is the inverse CDF of a Gaussian distribution with parameters

(0,1).

Unfortunately, in practice the variance σ2 is unknown.

Modified CLT Interval

We can use CICLT by replacing σ to sample standard deviation s = 1
N2 at

the initial stages of the computation if X̃ is equal to 0 (or 1).

M. Vasileva VECoS 2020 8 / 19

Modified CLT interval

Standard CLT Confidence Interval (CI)

CICLT =

(
X̃ − Ca

σ√
N

; X̃ + Ca
σ√
N

)
N is the number of samples

X̃ = 1
N

∑N
i=1 xi

parameter a defines confidence level at c = 1 − a.

σ - standard deviation of the samples x1, ...xN

Ca = Quant(1 − a
2
) is the inverse CDF of a Gaussian distribution with parameters

(0,1).

Unfortunately, in practice the variance σ2 is unknown.

Modified CLT Interval

We can use CICLT by replacing σ to sample standard deviation s = 1
N2 at

the initial stages of the computation if X̃ is equal to 0 (or 1).

M. Vasileva VECoS 2020 8 / 19

Results: MC and QMC Error Comparison

Absolute error with respect to the number of samples.

Figure 3: Model: Collision, type-max. Figure 4: Model: Bad, type-max2.

QMC advantage in the error size holds for all tested models

We also note “unlucky” pairs (p,n) such that the corresponding MC
error is much bigger than the QMC method error.

M. Vasileva VECoS 2020 9 / 19

Results: MC and QMC Error Comparison

Absolute error with respect to the number of samples.

Figure 3: Model: Collision, type-max. Figure 4: Model: Bad, type-max2.

QMC advantage in the error size holds for all tested models

We also note “unlucky” pairs (p,n) such that the corresponding MC
error is much bigger than the QMC method error.

M. Vasileva VECoS 2020 9 / 19

Results: Border Probability Interval Coverage

Figure 5: Comparison of confidence interval distribution for probability values near 0, interval
size equal to 10−2 and c - confidence level.

The Bayesian method tends to overestimate the true probability
values while CLT tends to underestimate them.

M. Vasileva VECoS 2020 10 / 19

Results: Border Probability Interval Coverage

Figure 5: Comparison of confidence interval distribution for probability values near 0, interval
size equal to 10−2 and c - confidence level.

The Bayesian method tends to overestimate the true probability
values while CLT tends to underestimate them.

M. Vasileva VECoS 2020 10 / 19

Results: Border Probability Interval Coverage

Figure 6: Comparison of confidence interval distribution for probability values near 0, interval
size equal to 10−2 and c - confidence level.

The size of the Bayesian, CLT and Agresti-Coull intervals decreases
significantly as the true probability moves toward 0.

M. Vasileva VECoS 2020 11 / 19

Results: Border Probability Interval Coverage

Figure 6: Comparison of confidence interval distribution for probability values near 0, interval
size equal to 10−2 and c - confidence level.

The size of the Bayesian, CLT and Agresti-Coull intervals decreases
significantly as the true probability moves toward 0.

M. Vasileva VECoS 2020 11 / 19

Results: Border Probability Sample Sizes

Figure 7: Comparison of sample size for probability values near 0, interval size equal to 10−2 and
c - confidence level.

Our modified CLT technique shows the best result across all
confidence levels.

When increasing the confidence all CIs based on the standard interval
outperform the Bayesian CI.

M. Vasileva VECoS 2020 12 / 19

Results: Border Probability Sample Sizes

Figure 7: Comparison of sample size for probability values near 0, interval size equal to 10−2 and
c - confidence level.

Our modified CLT technique shows the best result across all
confidence levels.

When increasing the confidence all CIs based on the standard interval
outperform the Bayesian CI.

M. Vasileva VECoS 2020 12 / 19

Results: Tested Models Interval Coverage

Model Type P CIB CICLT CIACW
CIW

Good
max 0.1 [0.09499, 0.10499] [0.09378, 0.10378] [0.09386, 0.10386] [0.09389, 0.10389]
min 0.1 [0.09419, 0.10419] [0.09667, 0.10667] [0.09668, 0.10668] [0.09677, 0.10677]

Bad
max 0.95001 [0.94525, 0.95525] [0.94579, 0.95579] [0.94564, 0.95564] [0.94548, 0.95548]

max2 0.88747 [0.88215, 0.89215] [0.88055, 0.89055] [0.88057, 0.89057] [0.88046, 0.89046]

min 4 × 10−7 [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Deceleration
max [0.08404, 0.08881] [0.08613, 0.09613] [0.08624, 0.09624] [0.08312, 0.09312] [0.08725, 0.09725]
min [0.04085, 0.04275] [0.03514, 0.04514] [0.03919, 0.04919] [0.03918, 0.04918] [0.03942, 0.04942]

Collision
(Basic)

max [0.96567, 0.97254] [0.96359, 0.97359] [0.96241, 0.97241] [0.96767, 0.9767] [0.96892, 0.96892]
min [0 , 0.00201] [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Collision
(Extended)

max [0.35751, 0.49961] [0.42651, 0.43652] [0.42719, 0.43724] [0.42757, 0.43757] [0.42656, 0.43656]
min [0.04296, 0.06311] [0.04979, 0.05979] [0.04766, 0.05766] [0.04764, 0.05764] [0.04748, 0.05748]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20515, 0.21519] [0.20558, 0.21563] [0.20533, 0.21533] [0.20531, 0.21531]
min [0.02471, 0.05191] [0.03011, 0.04015] [0.02902, 0.03902] [0.02954, 0.03945] [0.03956, 0.04956]

Anesthesia n/a [0.00916, 0.04222] [0.01284, 0.02284] [0.01513, 0.02511] [0.01623, 0.02623] [0.01545, 0.02545]

Table 1: Confidence interval computation obtained via ProbReach, with solver precision δ=10−3

and interval size equal to 10−2, Type - extremum type and P - true probability value, where
single point values were analytically computed and interval values are numerically guaranteed
enclosures (computed by ProbReach); confidence level = 0.99999.

The true probability value of the “Bad” model Type min and the
Collision (Basic) model Type min is very close to 0.

It allows the Bayesian, CLT and Agresti-Coull methods to form
intervals, which represent a half of the proposed interval size 10−2.

M. Vasileva VECoS 2020 13 / 19

Results: Tested Models Interval Coverage

Model Type P CIB CICLT CIACW
CIW

Good
max 0.1 [0.09499, 0.10499] [0.09378, 0.10378] [0.09386, 0.10386] [0.09389, 0.10389]
min 0.1 [0.09419, 0.10419] [0.09667, 0.10667] [0.09668, 0.10668] [0.09677, 0.10677]

Bad
max 0.95001 [0.94525, 0.95525] [0.94579, 0.95579] [0.94564, 0.95564] [0.94548, 0.95548]

max2 0.88747 [0.88215, 0.89215] [0.88055, 0.89055] [0.88057, 0.89057] [0.88046, 0.89046]

min 4 × 10−7 [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Deceleration
max [0.08404, 0.08881] [0.08613, 0.09613] [0.08624, 0.09624] [0.08312, 0.09312] [0.08725, 0.09725]
min [0.04085, 0.04275] [0.03514, 0.04514] [0.03919, 0.04919] [0.03918, 0.04918] [0.03942, 0.04942]

Collision
(Basic)

max [0.96567, 0.97254] [0.96359, 0.97359] [0.96241, 0.97241] [0.96767, 0.9767] [0.96892, 0.96892]
min [0 , 0.00201] [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Collision
(Extended)

max [0.35751, 0.49961] [0.42651, 0.43652] [0.42719, 0.43724] [0.42757, 0.43757] [0.42656, 0.43656]
min [0.04296, 0.06311] [0.04979, 0.05979] [0.04766, 0.05766] [0.04764, 0.05764] [0.04748, 0.05748]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20515, 0.21519] [0.20558, 0.21563] [0.20533, 0.21533] [0.20531, 0.21531]
min [0.02471, 0.05191] [0.03011, 0.04015] [0.02902, 0.03902] [0.02954, 0.03945] [0.03956, 0.04956]

Anesthesia n/a [0.00916, 0.04222] [0.01284, 0.02284] [0.01513, 0.02511] [0.01623, 0.02623] [0.01545, 0.02545]

Table 1: Confidence interval computation obtained via ProbReach, with solver precision δ=10−3

and interval size equal to 10−2, Type - extremum type and P - true probability value, where
single point values were analytically computed and interval values are numerically guaranteed
enclosures (computed by ProbReach); confidence level = 0.99999.

The true probability value of the “Bad” model Type min and the
Collision (Basic) model Type min is very close to 0.

It allows the Bayesian, CLT and Agresti-Coull methods to form
intervals, which represent a half of the proposed interval size 10−2.

M. Vasileva VECoS 2020 13 / 19

Results: Tested Models Interval Coverage

Model Type P CIB CICLT CIACW
CIW

Good
max 0.1 [0.09499, 0.10499] [0.09378, 0.10378] [0.09386, 0.10386] [0.09389, 0.10389]
min 0.1 [0.09419, 0.10419] [0.09667, 0.10667] [0.09668, 0.10668] [0.09677, 0.10677]

Bad
max 0.95001 [0.94525, 0.95525] [0.94579, 0.95579] [0.94564, 0.95564] [0.94548, 0.95548]

max2 0.88747 [0.88215, 0.89215] [0.88055, 0.89055] [0.88057, 0.89057] [0.88046, 0.89046]

min 4 × 10−7 [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Deceleration
max [0.08404, 0.08881] [0.08613, 0.09613] [0.08624, 0.09624] [0.08312, 0.09312] [0.08725, 0.09725]
min [0.04085, 0.04275] [0.03514, 0.04514] [0.03919, 0.04919] [0.03918, 0.04918] [0.03942, 0.04942]

Collision
(Basic)

max [0.96567, 0.97254] [0.96359, 0.97359] [0.96241, 0.97241] [0.96767, 0.9767] [0.96892, 0.96892]
min [0 , 0.00201] [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Collision
(Extended)

max [0.35751, 0.49961] [0.42651, 0.43652] [0.42719, 0.43724] [0.42757, 0.43757] [0.42656, 0.43656]
min [0.04296, 0.06311] [0.04979, 0.05979] [0.04766, 0.05766] [0.04764, 0.05764] [0.04748, 0.05748]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20515, 0.21519] [0.20558, 0.21563] [0.20533, 0.21533] [0.20531, 0.21531]
min [0.02471, 0.05191] [0.03011, 0.04015] [0.02902, 0.03902] [0.02954, 0.03945] [0.03956, 0.04956]

Anesthesia n/a [0.00916, 0.04222] [0.01284, 0.02284] [0.01513, 0.02511] [0.01623, 0.02623] [0.01545, 0.02545]

Table 2: Confidence interval computation obtained via ProbReach, with solver precision δ=10−3

and interval size equal to 10−2, Type - extremum type and P - true probability value, where
single point values were analytically computed and interval values are numerically guaranteed
enclosures (computed by ProbReach); confidence level = 0.99999.

The true probability intervals of the Collision Extended, Collision
Advanced, and Anesthesia models contain all confidence intervals.

M. Vasileva VECoS 2020 14 / 19

Results: Tested Models Interval Coverage

Model Type P CIB CICLT CIACW
CIW

Good
max 0.1 [0.09499, 0.10499] [0.09378, 0.10378] [0.09386, 0.10386] [0.09389, 0.10389]
min 0.1 [0.09419, 0.10419] [0.09667, 0.10667] [0.09668, 0.10668] [0.09677, 0.10677]

Bad
max 0.95001 [0.94525, 0.95525] [0.94579, 0.95579] [0.94564, 0.95564] [0.94548, 0.95548]

max2 0.88747 [0.88215, 0.89215] [0.88055, 0.89055] [0.88057, 0.89057] [0.88046, 0.89046]

min 4 × 10−7 [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Deceleration
max [0.08404, 0.08881] [0.08613, 0.09613] [0.08624, 0.09624] [0.08312, 0.09312] [0.08725, 0.09725]
min [0.04085, 0.04275] [0.03514, 0.04514] [0.03919, 0.04919] [0.03918, 0.04918] [0.03942, 0.04942]

Collision
(Basic)

max [0.96567, 0.97254] [0.96359, 0.97359] [0.96241, 0.97241] [0.96767, 0.9767] [0.96892, 0.96892]
min [0 , 0.00201] [0, 0.00517] [0, 0.00319] [0, 0.00494] [0, 0.00984]

Collision
(Extended)

max [0.35751, 0.49961] [0.42651, 0.43652] [0.42719, 0.43724] [0.42757, 0.43757] [0.42656, 0.43656]
min [0.04296, 0.06311] [0.04979, 0.05979] [0.04766, 0.05766] [0.04764, 0.05764] [0.04748, 0.05748]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20515, 0.21519] [0.20558, 0.21563] [0.20533, 0.21533] [0.20531, 0.21531]
min [0.02471, 0.05191] [0.03011, 0.04015] [0.02902, 0.03902] [0.02954, 0.03945] [0.03956, 0.04956]

Anesthesia n/a [0.00916, 0.04222] [0.01284, 0.02284] [0.01513, 0.02511] [0.01623, 0.02623] [0.01545, 0.02545]

Table 2: Confidence interval computation obtained via ProbReach, with solver precision δ=10−3

and interval size equal to 10−2, Type - extremum type and P - true probability value, where
single point values were analytically computed and interval values are numerically guaranteed
enclosures (computed by ProbReach); confidence level = 0.99999.

The true probability intervals of the Collision Extended, Collision
Advanced, and Anesthesia models contain all confidence intervals.

M. Vasileva VECoS 2020 14 / 19

Results: Tested Models Interval Coverage

Model Type P CIL CIAns CIArc Qint

Good
max 0.1 [0.09391, 0.10391] [0.09392, 0.10392] [0.09405, 0.10405] [0.09512, 0.10512]
min 0.1 [0.09671, 0.10671] [0.09679, 0.10679] [0.09675, 0.10675] [0.09525, 0.10525]

Bad
max 0.95001 [0.94545, 0.95545] [0.94543, 0.95543] [0.94735, 0.95735] [0.94543, 0.95543]

max2 0.88747 [0.88046, 0.89046] [0.88046, 0.89046] [0.88325, 0.89325] [0.88052, 0.89052]

min 4 × 10−7 [0, 0.00992] [0, 0.00992] [0.00445, 0.0139] [0,0.005]

Deceleration
max [0.08404, 0.08881] [0.08725, 0.09725] [0.08726, 0.09726] [0.08746, 0.09746] [0.08737, 0.09735]
min [0.04085, 0.04275] [0.03943, 0.04943] [0.03944, 0.04944] [0.039, 0.049] [0.03377, 0.04377]

Collision
(Basic)

max [0.96567, 0.97254] [0.96689, 0.97589] [0.96683, 0.97583] [0.96863, 0.97863] [0.96462, 0.97462]
min [0 , 0.00201] [0, 0.00992] [0, 0.00992] [0.00445, 0.0139] [0,0.005]

Collision
(Extended)

max [0.35751, 0.49961] [0.41774, 0.42774] [0.41779, 0.42779] [0.42745, 0.43745] [0.42875, 0.43875]
min [0.04296, 0.06311] [0.04745, 0.05745] [0.04776, 0.05776] [0.05776, 0.05673] [0.04576, 0.05576]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20547, 0.21547] [0.20547, 0.21547] [0.20385, 0.21385] [0.20453, 0.21453]
min [0.02471, 0.05191] [0.03861, 0.04861] [0.03887, 0.04887] [0.0363, 0.04363] [0.03031, 0.04031]

Anesthesia n/a [0.00916, 0.04222] [0.01557, 0.02557] [0.01562, 0.02562] [0.01385, 0.02385] [0.01852, 0.02852]

Table 3: Confidence interval computation obtained via ProbReach, with solver precision δ=10−3

and interval size equal to 10−2, Type - extremum type and P - true probability value, where
single point values were analytically computed and interval values are numerically guaranteed
enclosures (computed by ProbReach); confidence level = 0.99999.

The Arcsin interval does not contain single probability value for “Bad”
model Type min, while all other CIs contain single probability values

All CIs overlap with the true probability intervals.

M. Vasileva VECoS 2020 15 / 19

Results: Tested Models Interval Coverage

Model Type P CIL CIAns CIArc Qint

Good
max 0.1 [0.09391, 0.10391] [0.09392, 0.10392] [0.09405, 0.10405] [0.09512, 0.10512]
min 0.1 [0.09671, 0.10671] [0.09679, 0.10679] [0.09675, 0.10675] [0.09525, 0.10525]

Bad
max 0.95001 [0.94545, 0.95545] [0.94543, 0.95543] [0.94735, 0.95735] [0.94543, 0.95543]

max2 0.88747 [0.88046, 0.89046] [0.88046, 0.89046] [0.88325, 0.89325] [0.88052, 0.89052]

min 4 × 10−7 [0, 0.00992] [0, 0.00992] [0.00445, 0.0139] [0,0.005]

Deceleration
max [0.08404, 0.08881] [0.08725, 0.09725] [0.08726, 0.09726] [0.08746, 0.09746] [0.08737, 0.09735]
min [0.04085, 0.04275] [0.03943, 0.04943] [0.03944, 0.04944] [0.039, 0.049] [0.03377, 0.04377]

Collision
(Basic)

max [0.96567, 0.97254] [0.96689, 0.97589] [0.96683, 0.97583] [0.96863, 0.97863] [0.96462, 0.97462]
min [0 , 0.00201] [0, 0.00992] [0, 0.00992] [0.00445, 0.0139] [0,0.005]

Collision
(Extended)

max [0.35751, 0.49961] [0.41774, 0.42774] [0.41779, 0.42779] [0.42745, 0.43745] [0.42875, 0.43875]
min [0.04296, 0.06311] [0.04745, 0.05745] [0.04776, 0.05776] [0.05776, 0.05673] [0.04576, 0.05576]

Collision
(Advanced)

max [0.14807, 0.31121] [0.20547, 0.21547] [0.20547, 0.21547] [0.20385, 0.21385] [0.20453, 0.21453]
min [0.02471, 0.05191] [0.03861, 0.04861] [0.03887, 0.04887] [0.0363, 0.04363] [0.03031, 0.04031]

Anesthesia n/a [0.00916, 0.04222] [0.01557, 0.02557] [0.01562, 0.02562] [0.01385, 0.02385] [0.01852, 0.02852]

Table 3: Confidence interval computation obtained via ProbReach, with solver precision δ=10−3

and interval size equal to 10−2, Type - extremum type and P - true probability value, where
single point values were analytically computed and interval values are numerically guaranteed
enclosures (computed by ProbReach); confidence level = 0.99999.

The Arcsin interval does not contain single probability value for “Bad”
model Type min, while all other CIs contain single probability values

All CIs overlap with the true probability intervals.

M. Vasileva VECoS 2020 15 / 19

Results: Tested Models Sample Size

Model Type CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good
max 70422 69484 69582 69496 69530 69529 77262 68456
min 71898 71286 71339 71293 71321 71321 79369 68994

Bad
max 37388 36518 36771 36629 36687 36868 60006 36164

max2 79306 79097 79125 79101 79118 79118 96442 77892
min 5797 124 2766 1963 4136 4136 572 94

Deceleration
max 65248 65233 65330 65299 65320 65319 72114 59882
min 33147 32969 33133 33018 33060 33060 34231 29096

Collision
(Basic)

max 25279 24711 24834 24789 24934 24933 26045 23016
min 5797 124 2766 1963 4136 4136 572 94

Collision
(Extended)

max 191466 190776 191253 190894 191485 191472 376294 185456
min 41153 38942 39745 39473 39537 39541 47923 37608

Collision
(Advanced)

max 131517 129746 131185 129845 129934 129933 183405 127486
min 27305 25657 25835 25736 25792 25791 29362 24569

Anesthesia n/a 16197 15453 15834 15634 15734 15733 17845 15314

Table 4: Sample size comparison for confidence interval computation obtained via ProbReach,
with solver δ precision equal to 10−3 and interval size equal to 10−2, Type - extremum type;
confidence level = 0.99999.

All CIs except Arcsin CI show better result in number of points with
respect to Bayesian CI.

M. Vasileva VECoS 2020 16 / 19

Results: Tested Models Sample Size

Model Type CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good
max 70422 69484 69582 69496 69530 69529 77262 68456
min 71898 71286 71339 71293 71321 71321 79369 68994

Bad
max 37388 36518 36771 36629 36687 36868 60006 36164

max2 79306 79097 79125 79101 79118 79118 96442 77892
min 5797 124 2766 1963 4136 4136 572 94

Deceleration
max 65248 65233 65330 65299 65320 65319 72114 59882
min 33147 32969 33133 33018 33060 33060 34231 29096

Collision
(Basic)

max 25279 24711 24834 24789 24934 24933 26045 23016
min 5797 124 2766 1963 4136 4136 572 94

Collision
(Extended)

max 191466 190776 191253 190894 191485 191472 376294 185456
min 41153 38942 39745 39473 39537 39541 47923 37608

Collision
(Advanced)

max 131517 129746 131185 129845 129934 129933 183405 127486
min 27305 25657 25835 25736 25792 25791 29362 24569

Anesthesia n/a 16197 15453 15834 15634 15734 15733 17845 15314

Table 4: Sample size comparison for confidence interval computation obtained via ProbReach,
with solver δ precision equal to 10−3 and interval size equal to 10−2, Type - extremum type;
confidence level = 0.99999.

All CIs except Arcsin CI show better result in number of points with
respect to Bayesian CI.

M. Vasileva VECoS 2020 16 / 19

Results: Tested Models Sample Size

Model Type CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good
max 70422 69484 69582 69496 69530 69529 77262 68456
min 71898 71286 71339 71293 71321 71321 79369 68994

Bad
max 37388 36518 36771 36629 36687 36868 60006 36164

max2 79306 79097 79125 79101 79118 79118 96442 77892
min 5797 124 2766 1963 4136 4136 572 94

Deceleration
max 65248 65233 65330 65299 65320 65319 72114 59882
min 33147 32969 33133 33018 33060 33060 34231 29096

Collision
(Basic)

max 25279 24711 24834 24789 24934 24933 26045 23016
min 5797 124 2766 1963 4136 4136 572 94

Collision
(Extended)

max 191466 190776 191253 190894 191485 191472 376294 185456
min 41153 38942 39745 39473 39537 39541 47923 37608

Collision
(Advanced)

max 131517 129746 131185 129845 129934 129933 183405 127486
min 27305 25657 25835 25736 25792 25791 29362 24569

Anesthesia n/a 16197 15453 15834 15634 15734 15733 17845 15314

Table 5: Sample size comparison for confidence interval computation obtained via ProbReach,
with solver δ precision equal to 10−3 and interval size equal to 10−2, Type - extremum type;
confidence level = 0.99999.

The best results was shown by modified CLT and Qint CIs

Our proposed CLT modification can provide reasonable results for
RQMC calculation in comparison with the Bayesian MC method.

M. Vasileva VECoS 2020 17 / 19

Results: Tested Models Sample Size

Model Type CIB CICLT CIACW
CIW CIL CIAns CIArc Qint

Good
max 70422 69484 69582 69496 69530 69529 77262 68456
min 71898 71286 71339 71293 71321 71321 79369 68994

Bad
max 37388 36518 36771 36629 36687 36868 60006 36164

max2 79306 79097 79125 79101 79118 79118 96442 77892
min 5797 124 2766 1963 4136 4136 572 94

Deceleration
max 65248 65233 65330 65299 65320 65319 72114 59882
min 33147 32969 33133 33018 33060 33060 34231 29096

Collision
(Basic)

max 25279 24711 24834 24789 24934 24933 26045 23016
min 5797 124 2766 1963 4136 4136 572 94

Collision
(Extended)

max 191466 190776 191253 190894 191485 191472 376294 185456
min 41153 38942 39745 39473 39537 39541 47923 37608

Collision
(Advanced)

max 131517 129746 131185 129845 129934 129933 183405 127486
min 27305 25657 25835 25736 25792 25791 29362 24569

Anesthesia n/a 16197 15453 15834 15634 15734 15733 17845 15314

Table 5: Sample size comparison for confidence interval computation obtained via ProbReach,
with solver δ precision equal to 10−3 and interval size equal to 10−2, Type - extremum type;
confidence level = 0.99999.

The best results was shown by modified CLT and Qint CIs

Our proposed CLT modification can provide reasonable results for
RQMC calculation in comparison with the Bayesian MC method.

M. Vasileva VECoS 2020 17 / 19

Conclusion

We provided a comprehensive evaluation of CIs calculation techniques
based on MC and QMC techniques and showed that:

When estimating probabilities near the borders (i.e., close to 0 or 1),
our simple CLT modification has proved to be very effective, while
other techniques cannot form intervals

QMC-based techniques have excellent convergence and efficiency
especially when the number of samples is small

QMC methods are more efficient than MC methods by providing
precise estimates with fewer samples.

M. Vasileva VECoS 2020 18 / 19

Conclusion

We provided a comprehensive evaluation of CIs calculation techniques
based on MC and QMC techniques and showed that:

When estimating probabilities near the borders (i.e., close to 0 or 1),
our simple CLT modification has proved to be very effective, while
other techniques cannot form intervals

QMC-based techniques have excellent convergence and efficiency
especially when the number of samples is small

QMC methods are more efficient than MC methods by providing
precise estimates with fewer samples.

M. Vasileva VECoS 2020 18 / 19

Conclusion

We provided a comprehensive evaluation of CIs calculation techniques
based on MC and QMC techniques and showed that:

When estimating probabilities near the borders (i.e., close to 0 or 1),
our simple CLT modification has proved to be very effective, while
other techniques cannot form intervals

QMC-based techniques have excellent convergence and efficiency
especially when the number of samples is small

QMC methods are more efficient than MC methods by providing
precise estimates with fewer samples.

M. Vasileva VECoS 2020 18 / 19

Conclusion

We provided a comprehensive evaluation of CIs calculation techniques
based on MC and QMC techniques and showed that:

When estimating probabilities near the borders (i.e., close to 0 or 1),
our simple CLT modification has proved to be very effective, while
other techniques cannot form intervals

QMC-based techniques have excellent convergence and efficiency
especially when the number of samples is small

QMC methods are more efficient than MC methods by providing
precise estimates with fewer samples.

M. Vasileva VECoS 2020 18 / 19

References I

Anton A. Antonov and Sergei M. Ermakov, Empirically estimating error of integration by
quasi-monte carlo method, Vestnik Journal: Mathematics 47 (2015), no. 1, 1–8.

Sicun Gao, Jeremy Avigad, and Edmund M. Clarke, Delta-decidability over the reals, LICS,
2012, pp. 305–314.

Fedor Shmarov and Paolo Zuliani, ProbReach: Verified probabilistic δ-reachability for
stochastic hybrid systems, HSCC, ACM, 2015, pp. 134–139.

M. Vasileva VECoS 2020 19 / 19

Appendix

M. Vasileva VECoS 2020 1 / 13

Appendix: δ-satisfiability

Given an arbitrary bounded first-order formula:

φ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

fij(x1, ..., xn) = 0)

where each fij is a Type 2 computable function (i.e., “numerically
computable”).

For δ ∈ Q+, define the δ-weakening of φ:

φδ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

|fij(x1, ..., xn)| ≤ δ)

Given φ and δ ∈ Q+, a δ-complete decision procedure (Gao et al., LICS
2012) correctly returns one of the following: [GAC12]

δ-sat - if φδ is true (but φ might not be),
unsat - if φ is false (can be trusted).

δ-sat answer does not imply satisfiability of the (original) formula.

M. Vasileva VECoS 2020 2 / 13

Appendix: δ-satisfiability

Given an arbitrary bounded first-order formula:

φ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

fij(x1, ..., xn) = 0)

where each fij is a Type 2 computable function (i.e., “numerically
computable”).

For δ ∈ Q+, define the δ-weakening of φ:

φδ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

|fij(x1, ..., xn)| ≤ δ)

Given φ and δ ∈ Q+, a δ-complete decision procedure (Gao et al., LICS
2012) correctly returns one of the following: [GAC12]

δ-sat - if φδ is true (but φ might not be),
unsat - if φ is false (can be trusted).

δ-sat answer does not imply satisfiability of the (original) formula.

M. Vasileva VECoS 2020 2 / 13

Appendix: δ-satisfiability

Given an arbitrary bounded first-order formula:

φ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

fij(x1, ..., xn) = 0)

where each fij is a Type 2 computable function (i.e., “numerically
computable”).

For δ ∈ Q+, define the δ-weakening of φ:

φδ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

|fij(x1, ..., xn)| ≤ δ)

Given φ and δ ∈ Q+, a δ-complete decision procedure (Gao et al., LICS
2012) correctly returns one of the following: [GAC12]

δ-sat - if φδ is true (but φ might not be),
unsat - if φ is false (can be trusted).

δ-sat answer does not imply satisfiability of the (original) formula.

M. Vasileva VECoS 2020 2 / 13

Appendix: Monte Carlo

Compute MC integral estimation:∫ b

a
f (y)dy ≈ (b − a)

1

N

N∑
i=1

f (ui)

where N points ui are uniformly distributed on [a, b]

The variance of the MC estimator is:

Var(MC) =

∫ b

a
...

∫ b

a

(
1

N

N∑
i=1

f (ui)− I

)2

du1...duN =
σ2
f

N

The MC integration error mean is σf√
N

.

In practice, the integrand variance σ2
f is often unknown. That is why

the next estimation is instead used:

σ̂2
f ≈

1

N − 1

N∑
i=1

(
f (ui)−

1

N

N∑
i=1

f (ui)

)2

M. Vasileva VECoS 2020 3 / 13

Appendix: Monte Carlo

Compute MC integral estimation:∫ b

a
f (y)dy ≈ (b − a)

1

N

N∑
i=1

f (ui)

where N points ui are uniformly distributed on [a, b]

The variance of the MC estimator is:

Var(MC) =

∫ b

a
...

∫ b

a

(
1

N

N∑
i=1

f (ui)− I

)2

du1...duN =
σ2
f

N

The MC integration error mean is σf√
N

.

In practice, the integrand variance σ2
f is often unknown. That is why

the next estimation is instead used:

σ̂2
f ≈

1

N − 1

N∑
i=1

(
f (ui)−

1

N

N∑
i=1

f (ui)

)2

M. Vasileva VECoS 2020 3 / 13

Appendix: Monte Carlo

Compute MC integral estimation:∫ b

a
f (y)dy ≈ (b − a)

1

N

N∑
i=1

f (ui)

where N points ui are uniformly distributed on [a, b]

The variance of the MC estimator is:

Var(MC) =

∫ b

a
...

∫ b

a

(
1

N

N∑
i=1

f (ui)− I

)2

du1...duN =
σ2
f

N

The MC integration error mean is σf√
N

.

In practice, the integrand variance σ2
f is often unknown. That is why

the next estimation is instead used:

σ̂2
f ≈

1

N − 1

N∑
i=1

(
f (ui)−

1

N

N∑
i=1

f (ui)

)2

M. Vasileva VECoS 2020 3 / 13

Appendix: Monte Carlo

Compute MC integral estimation:∫ b

a
f (y)dy ≈ (b − a)

1

N

N∑
i=1

f (ui)

where N points ui are uniformly distributed on [a, b]

The variance of the MC estimator is:

Var(MC) =

∫ b

a
...

∫ b

a

(
1

N

N∑
i=1

f (ui)− I

)2

du1...duN =
σ2
f

N

The MC integration error mean is σf√
N

.

In practice, the integrand variance σ2
f is often unknown. That is why

the next estimation is instead used:

σ̂2
f ≈

1

N − 1

N∑
i=1

(
f (ui)−

1

N

N∑
i=1

f (ui)

)2

M. Vasileva VECoS 2020 3 / 13

Appendix: Quasi-Monte Carlo

QMC methods select the points ui deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967).

Remark

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while the

MC error is O
(

1√
N

)
, where N is the sample size.

The Koksma-Hlawka inequality that aims to bound the QMC
estimation error, but is not useful in practice

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used for
estimating the integration error

However, we can successfully use the CLT for estimating the error of
Randomised Quasi-Monte Carlo (RQMC) methods. [?]

M. Vasileva VECoS 2020 4 / 13

Appendix: Quasi-Monte Carlo

QMC methods select the points ui deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967).

Remark

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while the

MC error is O
(

1√
N

)
, where N is the sample size.

The Koksma-Hlawka inequality that aims to bound the QMC
estimation error, but is not useful in practice

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used for
estimating the integration error

However, we can successfully use the CLT for estimating the error of
Randomised Quasi-Monte Carlo (RQMC) methods. [?]

M. Vasileva VECoS 2020 4 / 13

Appendix: Quasi-Monte Carlo

QMC methods select the points ui deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967).

Remark

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while the

MC error is O
(

1√
N

)
, where N is the sample size.

The Koksma-Hlawka inequality that aims to bound the QMC
estimation error, but is not useful in practice

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used for
estimating the integration error

However, we can successfully use the CLT for estimating the error of
Randomised Quasi-Monte Carlo (RQMC) methods. [?]

M. Vasileva VECoS 2020 4 / 13

Appendix: Quasi-Monte Carlo

QMC methods select the points ui deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967).

Remark

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while the

MC error is O
(

1√
N

)
, where N is the sample size.

The Koksma-Hlawka inequality that aims to bound the QMC
estimation error, but is not useful in practice

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used for
estimating the integration error

However, we can successfully use the CLT for estimating the error of
Randomised Quasi-Monte Carlo (RQMC) methods. [?]

M. Vasileva VECoS 2020 4 / 13

Appendix: Quasi-Monte Carlo

QMC methods select the points ui deterministically using
low-discrepancy sequences, e.g. Sobol sequence (Sobol, 1967).

Remark

A QMC advantage with respect to MC is that its error is O
(

1
N

)
, while the

MC error is O
(

1√
N

)
, where N is the sample size.

The Koksma-Hlawka inequality that aims to bound the QMC
estimation error, but is not useful in practice

The terms of quasi-random sequences are statistically dependent, so
the Central Limit Theorem (CLT) can not be directly used for
estimating the integration error

However, we can successfully use the CLT for estimating the error of
Randomised Quasi-Monte Carlo (RQMC) methods. [?]

M. Vasileva VECoS 2020 4 / 13

Appendix: Randomised Quasi-Monte Carlo

Suppose X = {x1, ..., xn} - a deterministic low-discrepancy set

By transformation X̃ = Γ(X, ξ) a finite set X̃ is generated by the
random variable ξ

Example

Transformation Γ = (X + ξ) mod 1, where ξ is a random sample from MC
sequence and X is low-discrepancy sample from Sobol sequence

M. Vasileva VECoS 2020 5 / 13

Appendix: Randomised Quasi-Monte Carlo

Suppose X = {x1, ..., xn} - a deterministic low-discrepancy set

By transformation X̃ = Γ(X, ξ) a finite set X̃ is generated by the
random variable ξ

Example

Transformation Γ = (X + ξ) mod 1, where ξ is a random sample from MC
sequence and X is low-discrepancy sample from Sobol sequence

M. Vasileva VECoS 2020 5 / 13

Appendix: Randomised Quasi-Monte Carlo

Suppose X = {x1, ..., xn} - a deterministic low-discrepancy set

By transformation X̃ = Γ(X, ξ) a finite set X̃ is generated by the
random variable ξ

Example

Transformation Γ = (X + ξ) mod 1, where ξ is a random sample from MC
sequence and X is low-discrepancy sample from Sobol sequence

M. Vasileva VECoS 2020 5 / 13

Appendix: Randomised Quasi-Monte Carlo

Suppose X = {x1, ..., xn} - a deterministic low-discrepancy set

By transformation X̃ = Γ(X, ξ) a finite set X̃ is generated by the
random variable ξ

Example

Transformation Γ = (X + ξ) mod 1, where ξ is a random sample from MC
sequence and X is low-discrepancy sample from Sobol sequence

M. Vasileva VECoS 2020 5 / 13

Appendix: Randomised Quasi-Monte Carlo

Suppose X = {x1, ..., xn} - a deterministic low-discrepancy set

By transformation X̃ = Γ(X, ξ) a finite set X̃ is generated by the
random variable ξ

Example

Transformation Γ = (X + ξ) mod 1, where ξ is a random sample from MC
sequence and X is low-discrepancy sample from Sobol sequence

M. Vasileva VECoS 2020 5 / 13

Appendix: Randomized Quasi-Monte Carlo

For a randomised set X̃i we construct a RQMC estimate:

RQMCj ,n =
1

n

n∑
i=1

f (X̃i ,j)

for 0 < j 6 r , where i is a Sobol sample, j is a random sample and r
is the total number of different pseudorandom sequences.

Then, we take their average for overall RQMC estimation:

RQMCn =
1

r

r∑
j=1

RQMCj ,n

M. Vasileva VECoS 2020 6 / 13

Appendix: Randomized Quasi-Monte Carlo

For a randomised set X̃i we construct a RQMC estimate:

RQMCj ,n =
1

n

n∑
i=1

f (X̃i ,j)

for 0 < j 6 r , where i is a Sobol sample, j is a random sample and r
is the total number of different pseudorandom sequences.

Then, we take their average for overall RQMC estimation:

RQMCn =
1

r

r∑
j=1

RQMCj ,n

M. Vasileva VECoS 2020 6 / 13

Appendix: Randomized Quasi-Monte Carlo

By independence of the samples we have that for all 0 < j 6 r ::

Var(RQMCn) =
Var(RQMCj ,n)

r
.

Thus, we have the following variance estimation:

V̂ar(RQMCn) =
1

r(r − 1)

r∑
j=1

(
RQMCj ,n − RQMCn

)2
.

M. Vasileva VECoS 2020 7 / 13

Appendix: Randomized Quasi-Monte Carlo

By independence of the samples we have that for all 0 < j 6 r ::

Var(RQMCn) =
Var(RQMCj ,n)

r
.

Thus, we have the following variance estimation:

V̂ar(RQMCn) =
1

r(r − 1)

r∑
j=1

(
RQMCj ,n − RQMCn

)2
.

M. Vasileva VECoS 2020 7 / 13

Appendix: Qint (Ermakov & Antonov)

Consider

A set of random cubature formulas, which were introduced in
Ermakov-Granovsky theorem (Ermakov, 1975): [?]∫ b

a
f (y)dy ≈ 1

N

N∑
i=1

f (ui)

The variance of the constructed quadrature formula (Antonov &
Ermakov, Vestnik StPU 2015) is: [AE15]

Var(QMC) = Var(MC)− 1

N

∑
i<j

(ai − aj)
2

Var(MC) is the variance of MC method
ai =

∫
Xi

f (u)µ(du) for i = 1, 2, ...,N, where Xi is a Haar function set.

M. Vasileva VECoS 2020 8 / 13

Appendix: Qint (Ermakov & Antonov)

Consider

A set of random cubature formulas, which were introduced in
Ermakov-Granovsky theorem (Ermakov, 1975): [?]∫ b

a
f (y)dy ≈ 1

N

N∑
i=1

f (ui)

The variance of the constructed quadrature formula (Antonov &
Ermakov, Vestnik StPU 2015) is: [AE15]

Var(QMC) = Var(MC)− 1

N

∑
i<j

(ai − aj)
2

Var(MC) is the variance of MC method
ai =

∫
Xi

f (u)µ(du) for i = 1, 2, ...,N, where Xi is a Haar function set.

M. Vasileva VECoS 2020 8 / 13

Appendix: Qint (Ermakov & Antonov)

X = [0, 1]s . We are using the Sobol sequence (base b = 2), so
N = 2Ω, where Ω ∈ N;

We choose a splitting X1,X2, ...,XN based on elementary subsets, so
that any N-point segment in the form {xT ·N+1, ..., x(T+1)·N}, T ≥ 0,
is guaranteed to be in Lat(i1, ..., iN).

Some randomization is required: we apply the simplest
(subset-preserving) shift x −→ x + ξ. ξ ∈ U([0, 1]s), where ξ is the
same for the whole point set.

M. Vasileva VECoS 2020 9 / 13

Appendix: Qint (Ermakov & Antonov)

X = [0, 1]s . We are using the Sobol sequence (base b = 2), so
N = 2Ω, where Ω ∈ N;

We choose a splitting X1,X2, ...,XN based on elementary subsets, so
that any N-point segment in the form {xT ·N+1, ..., x(T+1)·N}, T ≥ 0,
is guaranteed to be in Lat(i1, ..., iN).

Some randomization is required: we apply the simplest
(subset-preserving) shift x −→ x + ξ. ξ ∈ U([0, 1]s), where ξ is the
same for the whole point set.

M. Vasileva VECoS 2020 9 / 13

Appendix: Qint (Ermakov & Antonov)

X = [0, 1]s . We are using the Sobol sequence (base b = 2), so
N = 2Ω, where Ω ∈ N;

We choose a splitting X1,X2, ...,XN based on elementary subsets, so
that any N-point segment in the form {xT ·N+1, ..., x(T+1)·N}, T ≥ 0,
is guaranteed to be in Lat(i1, ..., iN).

Some randomization is required: we apply the simplest
(subset-preserving) shift x −→ x + ξ. ξ ∈ U([0, 1]s), where ξ is the
same for the whole point set.

M. Vasileva VECoS 2020 9 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;
Update the integral estimate Î = 1

rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);
For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;
Update the integral estimate Î = 1

rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);
For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;
Update the integral estimate Î = 1

rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);
For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;
Update the integral estimate Î = 1

rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);
For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;

Update the integral estimate Î = 1
rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);
For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;
Update the integral estimate Î = 1

rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);
For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;
Update the integral estimate Î = 1

rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);

For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: Qint (Ermakov & Antonov)

1 Choose partition parameter Ω ∈ N;

2 Choose repetition parameter R ∈ N (total number of function
evaluations will be R · 2Ω);

3 Split [0, 1]s into N = 2Ω subsets of equal volume, based on
elementary subsets in base 2;

4 For r = 1, 2, ...,R repeat the following computational cycle:

Take N next Sobol points {x(r−1)·N+1, ...xr ·N} and shift them by ξ,
evaluate f ;
Update the integral estimate Î = 1

rN

∑rN
i=1 f (xi);

Update the variance estimate according to the aforecited theorem,
where aj are estimated by an average of r points each:
âj = 1

r

∑
i∈Xj

f (xi);
For rN function evaluations, build the confidence interval.

M. Vasileva VECoS 2020 10 / 13

Appendix: The Expectation of Monte Carlo Method

Consider the integral I =
∫ b
a f (y)dy , and a random variable U on [a, b].

The expectation of f (U) is:

E[f (U)] =

∫ b

a
f (y)ϕ(y)dy

where ϕ is the density of U. If U is uniformly distributed on [a, b], then
the integral becomes:

I =

∫ b

a
f (y)dy = (b − a)E[f (U)]

M. Vasileva VECoS 2020 11 / 13

Appendix: The Variance of Monte Carlo Method

The variance of the MC estimator is:

Var(MC) =

∫ b

a
...

∫ b

a

(
1

N

N∑
i=1

f (ui)− I

)2

du1...duN =
σ2
f

N
(1)

In practice, the integrand variance σ2
f is often unknown. That is why the

next estimation for the CI is instead used:

σ̂2
f =

1

N − 1

N∑
i=1

(
f (ui)−

1

N

N∑
i=1

f (ui)

)2

M. Vasileva VECoS 2020 12 / 13

Appendix: The Variance of Randomised Quasi-Monte
Carlo Method

By independence of the samples we have that:

Var(RQMCn) =
Var(RQMCj ,n)

r
.

Thus, we have the following variance estimation:

V̂ar(RQMCn) =
1

r(r − 1)

r∑
j=1

(
RQMCj ,n − RQMCn

)2
.

M. Vasileva VECoS 2020 13 / 13

	Appendix

