Deep Reinforcement Learning for Solving AGVs Routing Problem

Authors: Chengxuan Lu, Jinjun Long, Zichao Xing, Weimin Wu, Yong Gu, Jiliang Luo, and Yi-Sheng Huang

Reporter: Chengxuan Lu

Introduction

AGVs Routing Problem

DRL Framework

Feature Processing

Neural Network Architecture

Experiments

Conclusion

1 Introduction

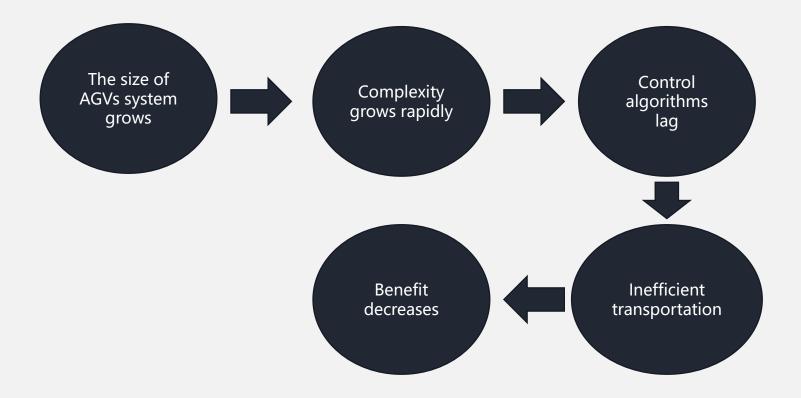
Background

AGV (automated guided vehicle)

- Flexible
- Efficient
- High capacity
- Unmanned

AGVs working in a warehouse

Background



Background

	Advantage	Disadvantage
Exact approaches	Optimal solution	Extreme high time complexity
Heuristics	Good solution	High time complexity
Meta-heuristics	Good solution	Cannot response in real-time
Regulations	Response in real-time	Relative suboptimal solution

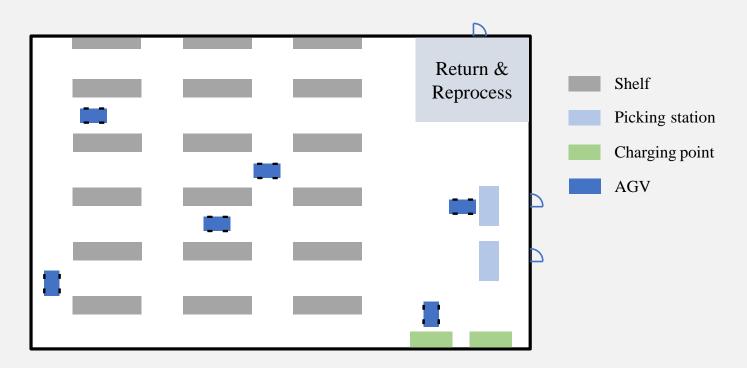
Development of Deep Reinforcement Learning (DRL)

Similar Researches

- Tabular reinforcement learning. Curse-of-dimensionality.
- Supervised data will influence the final performance.
- AGVs number is small.

2 AGVs Routing Problem

AGVs system



A simplified AGVs working environment

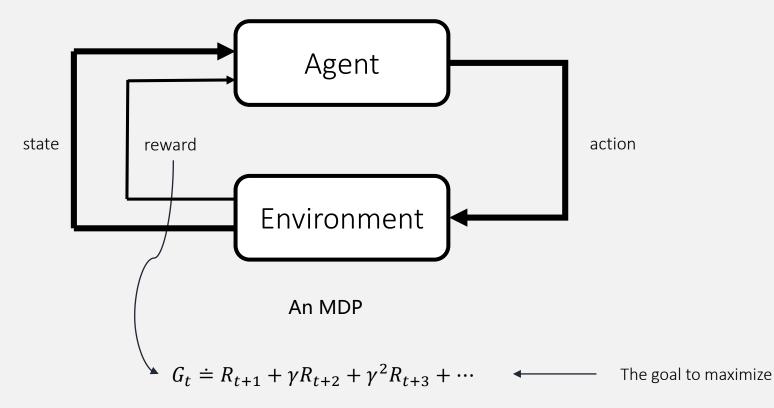
AGVs Routing



Problems in AGVs routing

3 DRL Framework

Markov decision processes (MDPs)



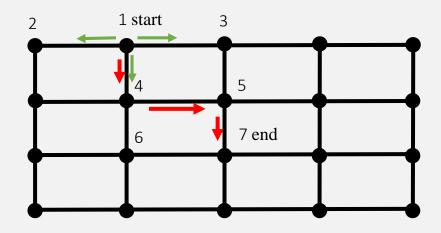
An MDP is a natural real-time responding model

Modeling Routing Problem based on MDPs

Conventional routing mode Plan the total or a part of the route before depart

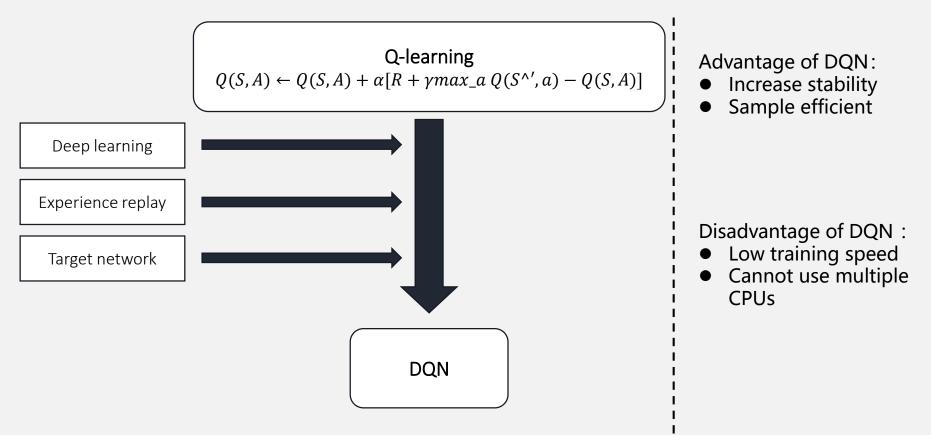
MDPs mode

A series of decisions in time sequence (decide step by step based on the real-time information) $S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, ...$

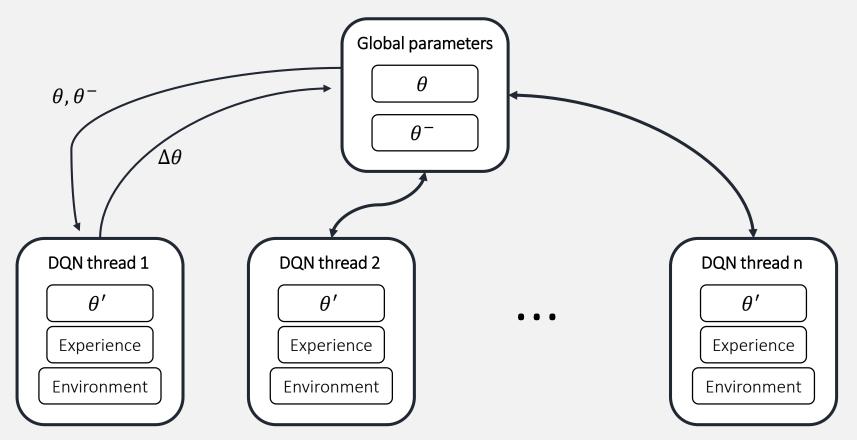


After the agent reaches point 4 from point 1, it will see the latest state which may be different from the state in point 1

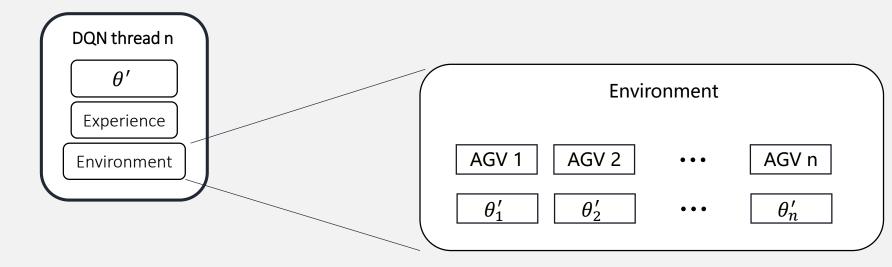
DQN



Asynchronous DQN



Parameter sharing

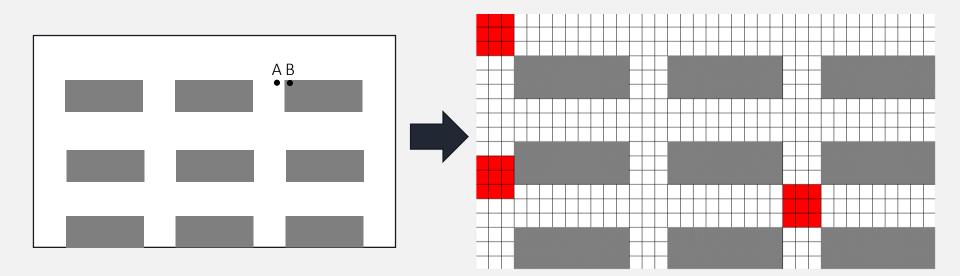


The joint action of a multi-agent problem suffers curse-of-dimensionality

Make $\theta' = \theta'_1 = \theta'_2 = \cdots = \theta'_n$

4 Feature Processing

Discretization of Continuous Features

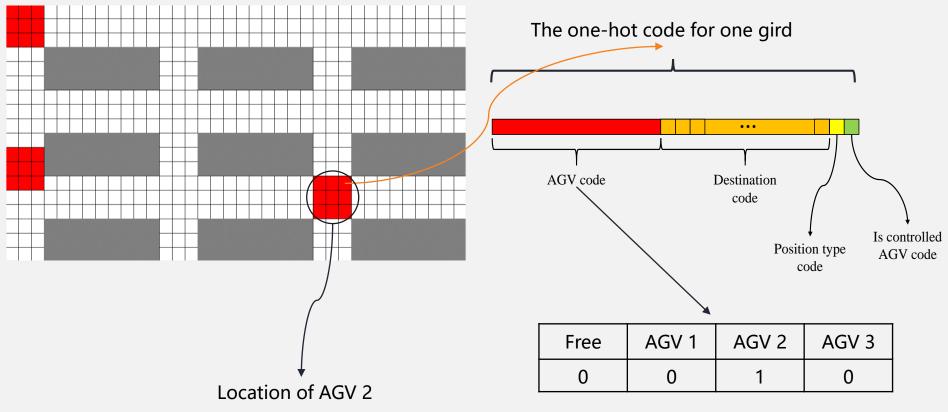


point A: (1.1, 3.2) on a track, point B: (1.05, 3.2) on an obstacle.

Discretize the map into grids

Jump characteristic

One-hot code



Word Embedding

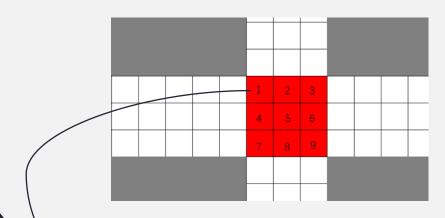
...

cat: [-0.065, -0.035, 0.019, -0.026, 0.085,...]

dog: [-0.019, -0.076, 0.044, 0.021,0.095,...]

table: [0.027, 0.013, 0.006, -0.023, 0.014, ...]

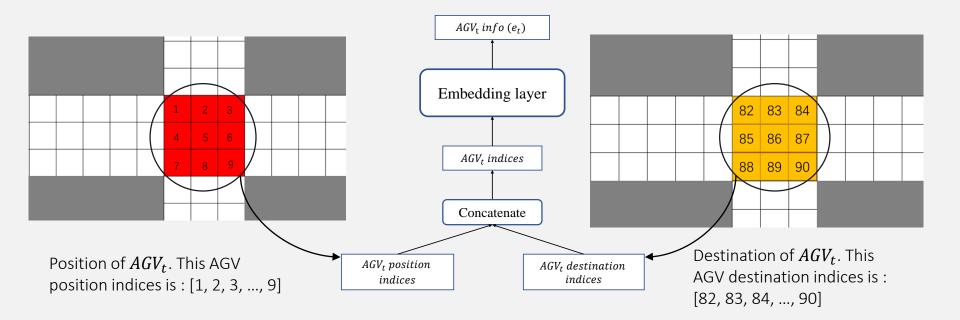
Use an embedding vector to represent a word



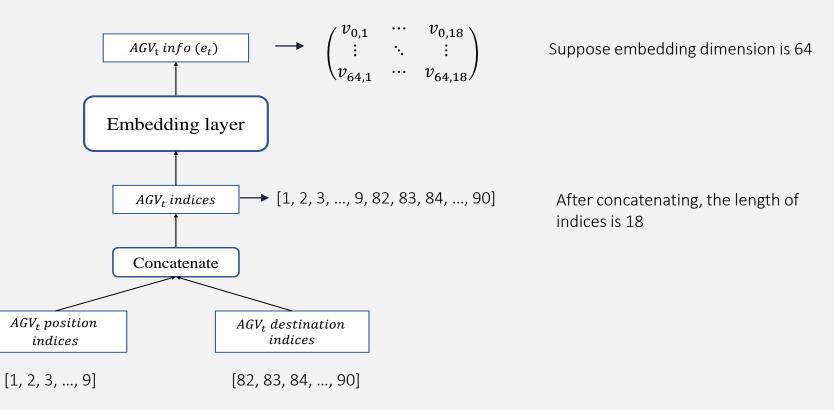
1: [-0.032, -0.095, 0.039, 0.036, 0.038,...] 2: [-0.018, -0.076, 0.042, 0.021,0.055,...]

96: [0.123, 0.098, 0.066, -0.028, -0.076, ...]

Embedding Code



Embedding Code



Comparison of Input Size of One-hot and Embedding

Suppose:

Map discretization	Number of girds of one AGV occupies	AGVs number	Embedding dimension
n*n	m*m	k	dim

	One-hot	Embedding	
Input size	$n^2(2k+4)$	$k \times dim \times m^2 \times 2$	
Make n=100, m=3, a=10, dim=32			
	One-hot	Embedding	
Input Size	240000	5760	

The embedding input is about 41.7 times smaller than the one-hot input

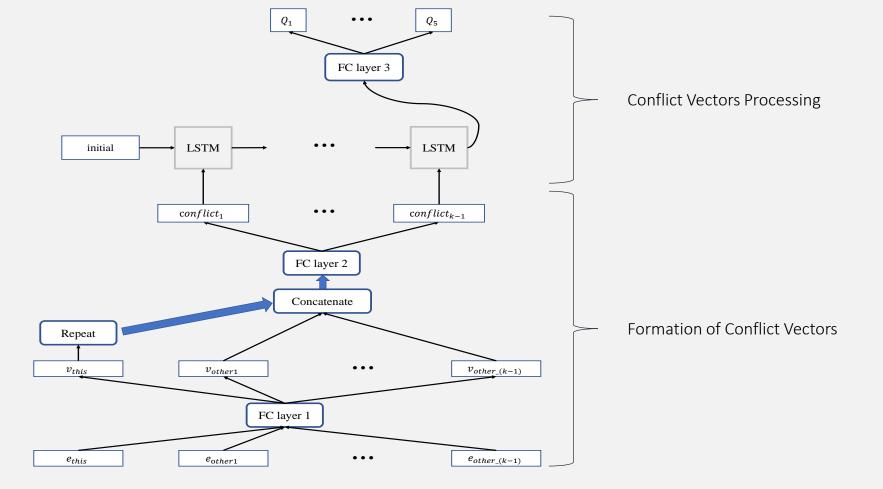
Comparison of Input Size of One-hot and Embedding

Advantage of Embedding:

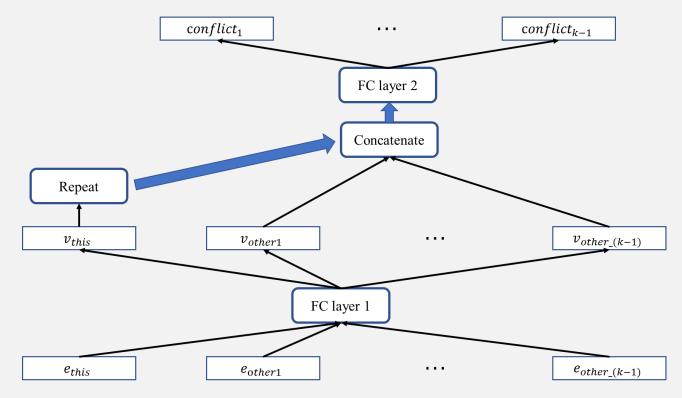
- Need less data
- Suitable for complex terrains

An example of sparse road scene

5 Neural Network Architecture

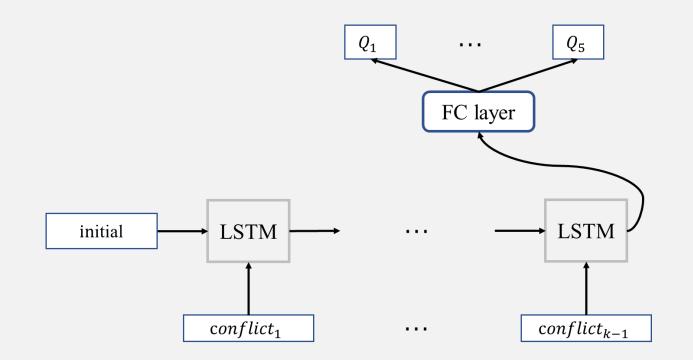


Formation of Conflict Vectors



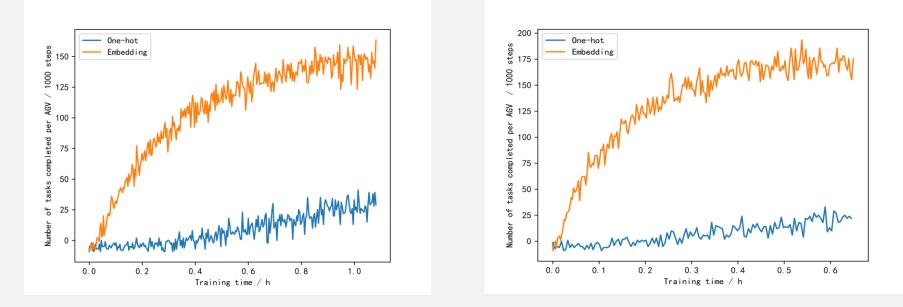
Parameter sharing. The input data should be formed from the perspective of the ego of this agent

Conflict Vectors Processing



6 Experiments

Comparison of One-hot and Embedding

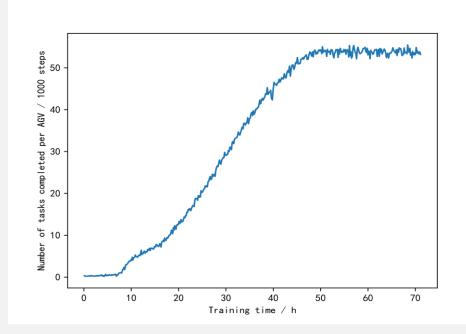


Track proportion: 62%

Track proportion: 43%

The network for one-hot: 2 conv blocks + 2 FC layers.

Results



Config:

- Grids: 28 * 14
- AGVs number: 22 •
- Embedding dimension: 64 CPU: 56 cores •
- •

Training process of a scene with 22 AGVs

Results

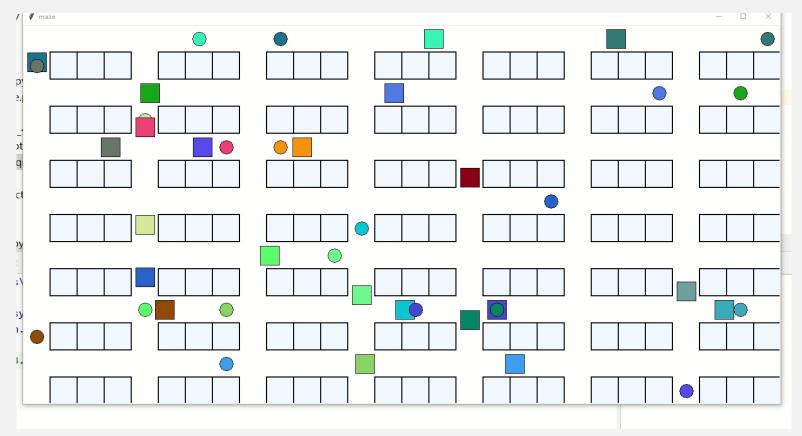
	Average Performance
Random	0.355
Regulation	46.1
Asynchronous DQN	54.2

Performance comparison between random, regulation, and asynchronous DQN

Asynchronous DQN is about 153 times better than the regulation and 18% better than the regulation method in performance.

Performance: average number of tasks completed by one AGV every 1000 steps

Simulation



22 AGVs, 56 CPUs, 72 hours

Conclusion

Conclusion

Method:

- Model the AGVs routing problem into an MDP.
- Improve CPU utilization by the asynchronous technique.
- Use the embedding technique to represent grids.
- LSTM is exploited to process features.

Result:

• Our model has advantages over conventional methods both in responding speed and getting more optimal solutions.

Thank you

Authors: Chengxuan Lu, Jinjun Long, Zichao Xing, Weimin Wu, Yong Gu, Jiliang Luo, and Yi-Sheng Huang

Reporter: Chengxuan Lu